arm

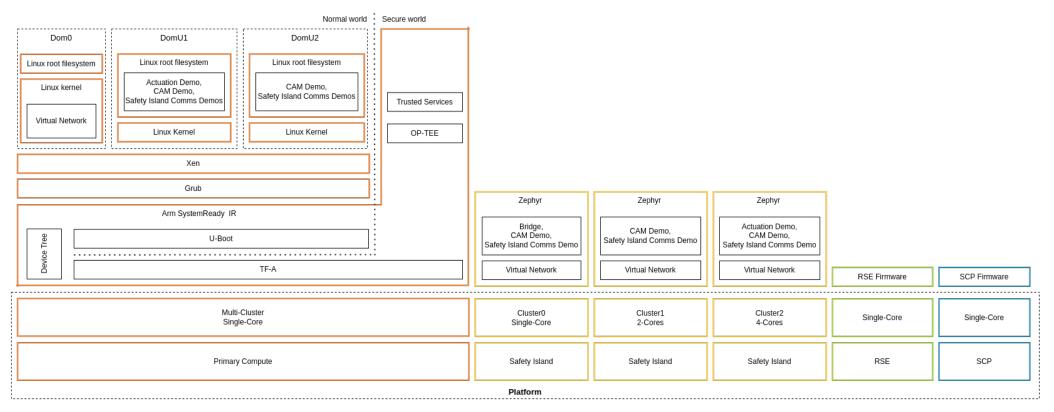
Xen on the Arm[®] RD-1 AE

Running Xen on the latest Arm Automotive platform design

Luca Fancellu 24/10/2024

© 2024 Arm

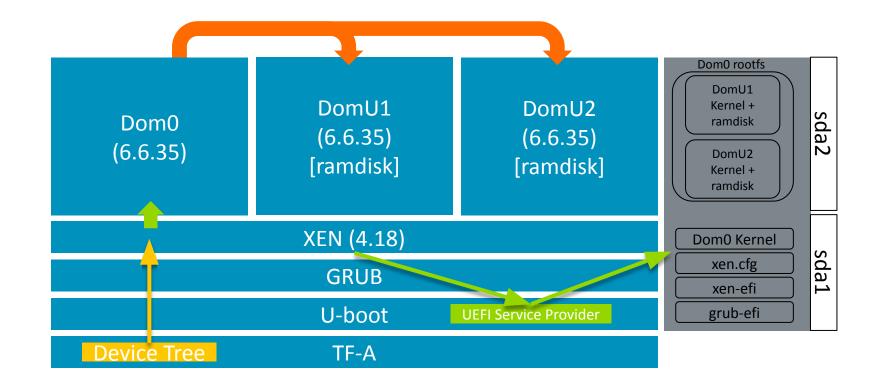
Outline


- Introduction to the RD-1 AE platform
- Software architecture
- Xen on RD-1 AE
 - Heterogeneous Inter-Processor Communication
 - Network topology
- Arm features in Xen
 - GICv4.1 + PCI passthrough
 - MPAM
 - SVE
- Testing
- Links

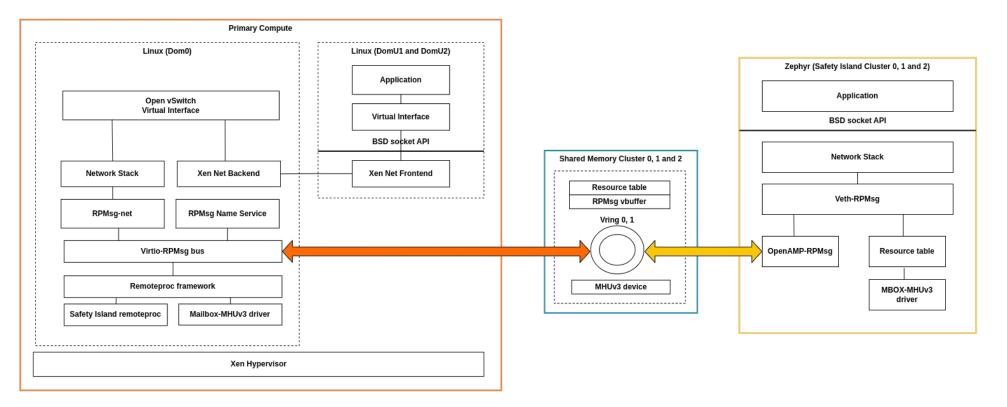
Introduction to the RD-1 AE

- The Arm Reference Design-1 AE, or RD-1 AE introduces few concept:
 - Primary Compute
 - High-performance Arm[®] Neoverse[™] V3AE Application Processors (Armv9.2-A)
 - Safety Island
 - 3 clusters of Arm[®] Cortex[®]-R82AE (Armv8-R AArch64)
 - Runtime Security Engine (RSE)
 - Cortex-M55 (Armv8.1-M)
- A Fixed Virtual Platform (FVP) is available as part of the Reference Design.
 - https://developer.arm.com/downloads/-/arm-ecosystem-fvps

Software architecture


- The SW stack implements a Baremetal and a Virtualization Architecture
 - Focus on the Virtualization Architecture

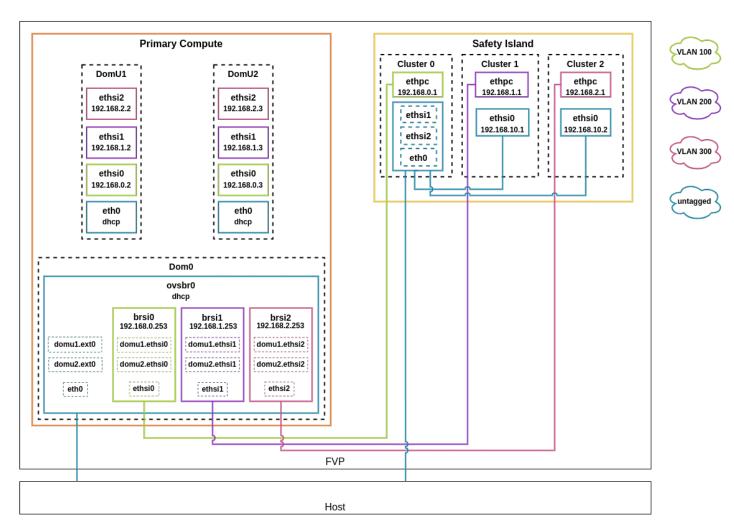
Arm Automotive Solutions High-Level Diagram - Virtualization Architecture


Xen on RD-1 AE

- Xen is started by the U-boot -> GRUB chain
- UEFI Xen stub uses the UEFI provider to read the disk and load Dom0 Kernel
- Once the Dom0 Kernel is started, DomU1 and DomU2 are started using XL

Xen on RD-1 AE - HIPC

- Custom Linux driver for Heterogeneous Inter-Processor Communication for DomO:
 - DomU1 and DomU2 uses PV network drivers



Arm Automotive Solutions HIPC - Virtualization Architecture

Xen on RD-1 AE – Network Topology

- Dom0 runs Open vSwitch:
 - Network bridges
 - VLAN traffic
- Safety Island Clusters have different VLAN IDs
 - Ethsi<X> and eth0 are for development purpose only
 - Every DomU can reach every cluster, but depending on the use-case it can be restricted

Arm Automotive Solutions Network Topology - Virtualization Architecture

Arm features in Xen

- **MPAM**
 - Provide MPAM support for the System Level Cache (L3) partitioning
 - Dom0 has ¼ of the available SLC portions
 - DomU1 and DomU2 has 1/8 respectively of the available SLC portions
 - Partitions are for demonstration purpose only
- GICv4.1 + PCI Passthrough
 - DomU1 has a PCI AHCI SATA Disk attached to it
- SVE/SVE2
 - The NeoverseTM V3AE Application Processors is SVE/SVE2 capable, ^{root@domu1:~# cat /proc/sys/abi/sve_default_vector_length} Dom0 and the guests can use SVE/SVE2 instructions
 - Maximum vector length is 128 bit (16 byte)

Socket ID	0	
SLC	32768KB	
Default CPBM	Øxffff	
ID	NAME	CPBM
0	Domain-0	Øxf
1	domu1	Øxce
2	domu2	0x30

Testing

- The SW stack is built using Yocto, the testing is performed using Yocto OEQA
 - Based on Python unittest
 - Performs tests on the FVP platform
 - Uses Pexpect library to interact with the platform
- Testing examples:
 - Test case that checks Dom0 has boot to shell, performs the login and uses xl console <dom> to test that the DomUs reaches the prompt and the shell.
 - Test case that checks PCI Passthrough is working correctly, starting the system, checking that DomU1 sees the disk (lspci)
 - Test case that checks GICv4.1 vLPI direct injection is working correctly, looking into /proc/interrupts for non-zero MSI-X/IPI0 interrupts
 - Test case that uses BATS in order to validate MPAM configuration is applied on boot and after guests lifecycle management.

Links

- The SW stack can be browsed at:
 - <u>https://gitlab.arm.com/automotive-and-industrial/arm-auto-solutions/sw-ref-stack</u>
- The SW stack documentation can be found at:
 - <u>https://arm-auto-solutions.docs.arm.com/</u>

	+						
arr						Thank You + Danke	
						Gracias	
						→ Grazie 谢谢	
						ありがとう Asante	
						Merci 감사합니다	
						धन्यवाद + Kiitos	
						شکرًا ধন্যবাদ	
© 2024 Arm						౧౹౹ఀ౧ ధన్యవాదములు	

arm

The Arm trademarks featured in this presentation are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All rights reserved. All other marks featured may be trademarks of their respective owners.

www.arm.com/company/policies/trademarks

© 2024 Arm						