[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index]

Re: [Xen-devel] [RFC 2/2] x86, vdso, pvclock: Simplify and speed up the vdso pvclock reader



On 12/22/2014 07:39 PM, Andy Lutomirski wrote:
The pvclock vdso code was too abstracted to understand easily and
excessively paranoid.  Simplify it for a huge speedup.

This opens the door for additional simplifications, as the vdso no
longer accesses the pvti for any vcpu other than vcpu 0.

Before, vclock_gettime using kvm-clock took about 64ns on my machine.
With this change, it takes 19ns, which is almost as fast as the pure TSC
implementation.

Signed-off-by: Andy Lutomirski <luto@xxxxxxxxxxxxxx>
---
  arch/x86/vdso/vclock_gettime.c | 82 ++++++++++++++++++++++++------------------
  1 file changed, 47 insertions(+), 35 deletions(-)

diff --git a/arch/x86/vdso/vclock_gettime.c b/arch/x86/vdso/vclock_gettime.c
index 9793322751e0..f2e0396d5629 100644
--- a/arch/x86/vdso/vclock_gettime.c
+++ b/arch/x86/vdso/vclock_gettime.c
@@ -78,47 +78,59 @@ static notrace const struct pvclock_vsyscall_time_info 
*get_pvti(int cpu)
static notrace cycle_t vread_pvclock(int *mode)
  {
-       const struct pvclock_vsyscall_time_info *pvti;
+       const struct pvclock_vcpu_time_info *pvti = &get_pvti(0)->pvti;
        cycle_t ret;
-       u64 last;
-       u32 version;
-       u8 flags;
-       unsigned cpu, cpu1;
-
+       u64 tsc, pvti_tsc;
+       u64 last, delta, pvti_system_time;
+       u32 version, pvti_tsc_to_system_mul, pvti_tsc_shift;
/*
-        * Note: hypervisor must guarantee that:
-        * 1. cpu ID number maps 1:1 to per-CPU pvclock time info.
-        * 2. that per-CPU pvclock time info is updated if the
-        *    underlying CPU changes.
-        * 3. that version is increased whenever underlying CPU
-        *    changes.
+        * Note: The kernel and hypervisor must guarantee that cpu ID
+        * number maps 1:1 to per-CPU pvclock time info.
+        *
+        * Because the hypervisor is entirely unaware of guest userspace
+        * preemption, it cannot guarantee that per-CPU pvclock time
+        * info is updated if the underlying CPU changes or that that
+        * version is increased whenever underlying CPU changes.
+        *
+        * On KVM, we are guaranteed that pvti updates for any vCPU are
+        * atomic as seen by *all* vCPUs.  This is an even stronger
+        * guarantee than we get with a normal seqlock.
         *
+        * On Xen, we don't appear to have that guarantee, but Xen still
+        * supplies a valid seqlock using the version field.
+
+        * We only do pvclock vdso timing at all if
+        * PVCLOCK_TSC_STABLE_BIT is set, and we interpret that bit to
+        * mean that all vCPUs have matching pvti and that the TSC is
+        * synced, so we can just look at vCPU 0's pvti.
         */
-       do {
-               cpu = __getcpu() & VGETCPU_CPU_MASK;
-               /* TODO: We can put vcpu id into higher bits of pvti.version.
-                * This will save a couple of cycles by getting rid of
-                * __getcpu() calls (Gleb).
-                */
-
-               pvti = get_pvti(cpu);
-
-               version = __pvclock_read_cycles(&pvti->pvti, &ret, &flags);
-
-               /*
-                * Test we're still on the cpu as well as the version.
-                * We could have been migrated just after the first
-                * vgetcpu but before fetching the version, so we
-                * wouldn't notice a version change.
-                */
-               cpu1 = __getcpu() & VGETCPU_CPU_MASK;
-       } while (unlikely(cpu != cpu1 ||
-                         (pvti->pvti.version & 1) ||
-                         pvti->pvti.version != version));
-
-       if (unlikely(!(flags & PVCLOCK_TSC_STABLE_BIT)))
+
+       if (unlikely(!(pvti->flags & PVCLOCK_TSC_STABLE_BIT))) {
                *mode = VCLOCK_NONE;
+               return 0;
+       }
+
+       do {
+               version = pvti->version;
+
+               /* This is also a read barrier, so we'll read version first. */
+               rdtsc_barrier();
+               tsc = __native_read_tsc();


This will cause VMEXIT on Xen with TSC_MODE_ALWAYS_EMULATE which is used, for example, after guest migrated (unless HW is capable of scaling TSC rate).

-boris


+
+               pvti_tsc_to_system_mul = pvti->tsc_to_system_mul;
+               pvti_tsc_shift = pvti->tsc_shift;
+               pvti_system_time = pvti->system_time;
+               pvti_tsc = pvti->tsc_timestamp;
+
+               /* Make sure that the version double-check is last. */
+               smp_rmb();
+       } while (unlikely((version & 1) || version != pvti->version));
+
+       delta = tsc - pvti_tsc;
+       ret = pvti_system_time +
+               pvclock_scale_delta(delta, pvti_tsc_to_system_mul,
+                                   pvti_tsc_shift);
/* refer to tsc.c read_tsc() comment for rationale */
        last = gtod->cycle_last;


_______________________________________________
Xen-devel mailing list
Xen-devel@xxxxxxxxxxxxx
http://lists.xen.org/xen-devel


 


Rackspace

Lists.xenproject.org is hosted with RackSpace, monitoring our
servers 24x7x365 and backed by RackSpace's Fanatical Support®.