|
[Date Prev][Date Next][Thread Prev][Thread Next][Date Index][Thread Index] [xen master] xen/device-tree: Move Arm's setup.c bootinfo functions to common
commit d6c57aa085e7abb1eacf015511f0f40bc2f28d81
Author: Shawn Anastasio <sanastasio@xxxxxxxxxxxxxxxxxxxxx>
AuthorDate: Tue Aug 6 13:41:13 2024 +0200
Commit: Julien Grall <jgrall@xxxxxxxxxx>
CommitDate: Tue Aug 6 19:10:56 2024 +0100
xen/device-tree: Move Arm's setup.c bootinfo functions to common
Arm's setup.c contains a collection of functions for parsing memory map
and other boot information from a device tree. Since these routines are
generally useful on any architecture that supports device tree booting,
move them into xen/common/device-tree.
Also, common/device_tree.c has been moved to the device-tree folder with
the corresponding updates to common/Makefile and
common/device-tree/Makefile.
Mentioning of arm32 is changed to CONFIG_SEPARATE_XENHEAP in comparison with
original ARM's code as now it is moved in common code.
Suggested-by: Julien Grall <julien@xxxxxxx>
Signed-off-by: Shawn Anastasio <sanastasio@xxxxxxxxxxxxxxxxxxxxx>
Signed-off-by: Oleksii Kurochko <oleksii.kurochko@xxxxxxxxx>
Acked-by: Julien Grall <jgrall@xxxxxxxxxx>
---
MAINTAINERS | 3 +-
xen/arch/arm/include/asm/setup.h | 185 +--
xen/arch/arm/setup.c | 432 -------
xen/common/Makefile | 2 +-
xen/common/device-tree/Makefile | 2 +
xen/common/device-tree/bootinfo.c | 459 +++++++
xen/common/device-tree/device-tree.c | 2253 ++++++++++++++++++++++++++++++++++
xen/common/device_tree.c | 2253 ----------------------------------
xen/include/xen/bootfdt.h | 195 +++
9 files changed, 2913 insertions(+), 2871 deletions(-)
diff --git a/MAINTAINERS b/MAINTAINERS
index 7c524a8a93..89be48fdf9 100644
--- a/MAINTAINERS
+++ b/MAINTAINERS
@@ -291,9 +291,10 @@ M: Bertrand Marquis <bertrand.marquis@xxxxxxx>
M: Michal Orzel <michal.orzel@xxxxxxx>
S: Supported
F: xen/common/libfdt/
-F: xen/common/device_tree.c
+F: xen/common/device-tree/
F: xen/common/dt-overlay.c
F: xen/include/xen/libfdt/
+F: xen/include/xen/bootfdt.h
F: xen/include/xen/device_tree.h
F: xen/drivers/passthrough/device_tree.c
diff --git a/xen/arch/arm/include/asm/setup.h b/xen/arch/arm/include/asm/setup.h
index c34179da93..1748be29e5 100644
--- a/xen/arch/arm/include/asm/setup.h
+++ b/xen/arch/arm/include/asm/setup.h
@@ -3,159 +3,11 @@
#include <public/version.h>
#include <asm/p2m.h>
+#include <xen/bootfdt.h>
#include <xen/device_tree.h>
-#define MIN_FDT_ALIGN 8
#define MAX_FDT_SIZE SZ_2M
-#define NR_MEM_BANKS 256
-#define NR_SHMEM_BANKS 32
-
-#define MAX_MODULES 32 /* Current maximum useful modules */
-
-typedef enum {
- BOOTMOD_XEN,
- BOOTMOD_FDT,
- BOOTMOD_KERNEL,
- BOOTMOD_RAMDISK,
- BOOTMOD_XSM,
- BOOTMOD_GUEST_DTB,
- BOOTMOD_UNKNOWN
-} bootmodule_kind;
-
-enum membank_type {
- /*
- * The MEMBANK_DEFAULT type refers to either reserved memory for the
- * device/firmware (when the bank is in 'reserved_mem') or any RAM (when
- * the bank is in 'mem').
- */
- MEMBANK_DEFAULT,
- /*
- * The MEMBANK_STATIC_DOMAIN type is used to indicate whether the memory
- * bank is bound to a static Xen domain. It is only valid when the bank
- * is in reserved_mem.
- */
- MEMBANK_STATIC_DOMAIN,
- /*
- * The MEMBANK_STATIC_HEAP type is used to indicate whether the memory
- * bank is reserved as static heap. It is only valid when the bank is
- * in reserved_mem.
- */
- MEMBANK_STATIC_HEAP,
- /*
- * The MEMBANK_FDT_RESVMEM type is used to indicate whether the memory
- * bank is from the FDT reserve map.
- */
- MEMBANK_FDT_RESVMEM,
-};
-
-/* Indicates the maximum number of characters(\0 included) for shm_id */
-#define MAX_SHM_ID_LENGTH 16
-
-struct shmem_membank_extra {
- char shm_id[MAX_SHM_ID_LENGTH];
- unsigned int nr_shm_borrowers;
-};
-
-struct membank {
- paddr_t start;
- paddr_t size;
- union {
- enum membank_type type;
-#ifdef CONFIG_STATIC_SHM
- struct shmem_membank_extra *shmem_extra;
-#endif
- };
-};
-
-struct membanks {
- __struct_group(membanks_hdr, common, ,
- unsigned int nr_banks;
- unsigned int max_banks;
- );
- struct membank bank[];
-};
-
-struct meminfo {
- struct membanks_hdr common;
- struct membank bank[NR_MEM_BANKS];
-};
-
-struct shared_meminfo {
- struct membanks_hdr common;
- struct membank bank[NR_SHMEM_BANKS];
- struct shmem_membank_extra extra[NR_SHMEM_BANKS];
-};
-
-/*
- * The domU flag is set for kernels and ramdisks of "xen,domain" nodes.
- * The purpose of the domU flag is to avoid getting confused in
- * kernel_probe, where we try to guess which is the dom0 kernel and
- * initrd to be compatible with all versions of the multiboot spec.
- */
-#define BOOTMOD_MAX_CMDLINE 1024
-struct bootmodule {
- bootmodule_kind kind;
- bool domU;
- paddr_t start;
- paddr_t size;
-};
-
-/* DT_MAX_NAME is the node name max length according the DT spec */
-#define DT_MAX_NAME 41
-struct bootcmdline {
- bootmodule_kind kind;
- bool domU;
- paddr_t start;
- char dt_name[DT_MAX_NAME];
- char cmdline[BOOTMOD_MAX_CMDLINE];
-};
-
-struct bootmodules {
- int nr_mods;
- struct bootmodule module[MAX_MODULES];
-};
-
-struct bootcmdlines {
- unsigned int nr_mods;
- struct bootcmdline cmdline[MAX_MODULES];
-};
-
-struct bootinfo {
- struct meminfo mem;
- /* The reserved regions are only used when booting using Device-Tree */
- struct meminfo reserved_mem;
- struct bootmodules modules;
- struct bootcmdlines cmdlines;
-#ifdef CONFIG_ACPI
- struct meminfo acpi;
-#endif
-#ifdef CONFIG_STATIC_SHM
- struct shared_meminfo shmem;
-#endif
- bool static_heap;
-};
-
-#ifdef CONFIG_ACPI
-#define BOOTINFO_ACPI_INIT .acpi.common.max_banks = NR_MEM_BANKS,
-#else
-#define BOOTINFO_ACPI_INIT
-#endif
-
-#ifdef CONFIG_STATIC_SHM
-#define BOOTINFO_SHMEM_INIT .shmem.common.max_banks = NR_SHMEM_BANKS,
-#else
-#define BOOTINFO_SHMEM_INIT
-#endif
-
-#define BOOTINFO_INIT \
-{ \
- .mem.common.max_banks = NR_MEM_BANKS, \
- .reserved_mem.common.max_banks = NR_MEM_BANKS, \
- BOOTINFO_ACPI_INIT \
- BOOTINFO_SHMEM_INIT \
-}
-
struct map_range_data
{
struct domain *d;
@@ -167,39 +19,8 @@ struct map_range_data
struct rangeset *irq_ranges;
};
-extern struct bootinfo bootinfo;
-
extern domid_t max_init_domid;
-static inline struct membanks *bootinfo_get_mem(void)
-{
- return container_of(&bootinfo.mem.common, struct membanks, common);
-}
-
-static inline struct membanks *bootinfo_get_reserved_mem(void)
-{
- return container_of(&bootinfo.reserved_mem.common, struct membanks,
common);
-}
-
-#ifdef CONFIG_ACPI
-static inline struct membanks *bootinfo_get_acpi(void)
-{
- return container_of(&bootinfo.acpi.common, struct membanks, common);
-}
-#endif
-
-#ifdef CONFIG_STATIC_SHM
-static inline struct membanks *bootinfo_get_shmem(void)
-{
- return container_of(&bootinfo.shmem.common, struct membanks, common);
-}
-
-static inline struct shmem_membank_extra *bootinfo_get_shmem_extra(void)
-{
- return bootinfo.shmem.extra;
-}
-#endif
-
void copy_from_paddr(void *dst, paddr_t paddr, unsigned long len);
size_t estimate_efi_size(unsigned int mem_nr_banks);
@@ -220,9 +41,6 @@ void fw_unreserved_regions(paddr_t s, paddr_t e,
void (*cb)(paddr_t ps, paddr_t pe),
unsigned int first);
-size_t boot_fdt_info(const void *fdt, paddr_t paddr);
-const char *boot_fdt_cmdline(const void *fdt);
-
bool check_reserved_regions_overlap(paddr_t region_start, paddr_t region_size);
struct bootmodule *add_boot_module(bootmodule_kind kind,
@@ -237,7 +55,6 @@ struct bootcmdline * boot_cmdline_find_by_name(const char
*name);
const char *boot_module_kind_as_string(bootmodule_kind kind);
void init_pdx(void);
-void populate_boot_allocator(void);
void setup_mm(void);
extern uint32_t hyp_traps_vector[];
diff --git a/xen/arch/arm/setup.c b/xen/arch/arm/setup.c
index 0c2fdaceaf..cb2c0a16b8 100644
--- a/xen/arch/arm/setup.c
+++ b/xen/arch/arm/setup.c
@@ -48,8 +48,6 @@
#include <xsm/xsm.h>
#include <asm/acpi.h>
-struct bootinfo __initdata bootinfo = BOOTINFO_INIT;
-
/*
* Sanitized version of cpuinfo containing only features available on all
* cores (only on arm64 as there is no sanitization support on arm32).
@@ -203,321 +201,6 @@ static void __init processor_id(void)
processor_setup();
}
-static void __init dt_unreserved_regions(paddr_t s, paddr_t e,
- void (*cb)(paddr_t ps, paddr_t pe),
- unsigned int first)
-{
- const struct membanks *reserved_mem = bootinfo_get_reserved_mem();
-#ifdef CONFIG_STATIC_SHM
- const struct membanks *shmem = bootinfo_get_shmem();
- unsigned int offset;
-#endif
- unsigned int i;
-
- /*
- * i is the current bootmodule we are evaluating across all possible
- * kinds.
- */
- for ( i = first; i < reserved_mem->nr_banks; i++ )
- {
- paddr_t r_s = reserved_mem->bank[i].start;
- paddr_t r_e = r_s + reserved_mem->bank[i].size;
-
- if ( s < r_e && r_s < e )
- {
- dt_unreserved_regions(r_e, e, cb, i + 1);
- dt_unreserved_regions(s, r_s, cb, i + 1);
- return;
- }
- }
-
-#ifdef CONFIG_STATIC_SHM
- /*
- * When retrieving the corresponding shared memory addresses
- * below, we need to index the shmem->bank starting from 0, hence
- * we need to use i - reserved_mem->nr_banks.
- */
- offset = reserved_mem->nr_banks;
- for ( ; i - offset < shmem->nr_banks; i++ )
- {
- paddr_t r_s, r_e;
-
- r_s = shmem->bank[i - offset].start;
-
- /* Shared memory banks can contain INVALID_PADDR as start */
- if ( INVALID_PADDR == r_s )
- continue;
-
- r_e = r_s + shmem->bank[i - offset].size;
-
- if ( s < r_e && r_s < e )
- {
- dt_unreserved_regions(r_e, e, cb, i + 1);
- dt_unreserved_regions(s, r_s, cb, i + 1);
- return;
- }
- }
-#endif
-
- cb(s, e);
-}
-
-/*
- * TODO: '*_end' could be 0 if the bank/region is at the end of the physical
- * address space. This is for now not handled as it requires more rework.
- */
-static bool __init meminfo_overlap_check(const struct membanks *mem,
- paddr_t region_start,
- paddr_t region_size)
-{
- paddr_t bank_start = INVALID_PADDR, bank_end = 0;
- paddr_t region_end = region_start + region_size;
- unsigned int i, bank_num = mem->nr_banks;
-
- for ( i = 0; i < bank_num; i++ )
- {
- bank_start = mem->bank[i].start;
- bank_end = bank_start + mem->bank[i].size;
-
- if ( INVALID_PADDR == bank_start || region_end <= bank_start ||
- region_start >= bank_end )
- continue;
- else
- {
- printk("Region: [%#"PRIpaddr", %#"PRIpaddr") overlapping with
bank[%u]: [%#"PRIpaddr", %#"PRIpaddr")\n",
- region_start, region_end, i, bank_start, bank_end);
- return true;
- }
- }
-
- return false;
-}
-
-/*
- * TODO: '*_end' could be 0 if the module/region is at the end of the physical
- * address space. This is for now not handled as it requires more rework.
- */
-static bool __init bootmodules_overlap_check(struct bootmodules *bootmodules,
- paddr_t region_start,
- paddr_t region_size)
-{
- paddr_t mod_start = INVALID_PADDR, mod_end = 0;
- paddr_t region_end = region_start + region_size;
- unsigned int i, mod_num = bootmodules->nr_mods;
-
- for ( i = 0; i < mod_num; i++ )
- {
- mod_start = bootmodules->module[i].start;
- mod_end = mod_start + bootmodules->module[i].size;
-
- if ( region_end <= mod_start || region_start >= mod_end )
- continue;
- else
- {
- printk("Region: [%#"PRIpaddr", %#"PRIpaddr") overlapping with
mod[%u]: [%#"PRIpaddr", %#"PRIpaddr")\n",
- region_start, region_end, i, mod_start, mod_end);
- return true;
- }
- }
-
- return false;
-}
-
-void __init fw_unreserved_regions(paddr_t s, paddr_t e,
- void (*cb)(paddr_t ps, paddr_t pe),
- unsigned int first)
-{
- if ( acpi_disabled )
- dt_unreserved_regions(s, e, cb, first);
- else
- cb(s, e);
-}
-
-/*
- * Given an input physical address range, check if this range is overlapping
- * with the existing reserved memory regions defined in bootinfo.
- * Return true if the input physical address range is overlapping with any
- * existing reserved memory regions, otherwise false.
- */
-bool __init check_reserved_regions_overlap(paddr_t region_start,
- paddr_t region_size)
-{
- const struct membanks *mem_banks[] = {
- bootinfo_get_reserved_mem(),
-#ifdef CONFIG_ACPI
- bootinfo_get_acpi(),
-#endif
-#ifdef CONFIG_STATIC_SHM
- bootinfo_get_shmem(),
-#endif
- };
- unsigned int i;
-
- /*
- * Check if input region is overlapping with reserved memory banks or
- * ACPI EfiACPIReclaimMemory (when ACPI feature is enabled) or static
- * shared memory banks (when static shared memory feature is enabled)
- */
- for ( i = 0; i < ARRAY_SIZE(mem_banks); i++ )
- if ( meminfo_overlap_check(mem_banks[i], region_start, region_size) )
- return true;
-
- /* Check if input region is overlapping with bootmodules */
- if ( bootmodules_overlap_check(&bootinfo.modules,
- region_start, region_size) )
- return true;
-
- return false;
-}
-
-struct bootmodule __init *add_boot_module(bootmodule_kind kind,
- paddr_t start, paddr_t size,
- bool domU)
-{
- struct bootmodules *mods = &bootinfo.modules;
- struct bootmodule *mod;
- unsigned int i;
-
- if ( mods->nr_mods == MAX_MODULES )
- {
- printk("Ignoring %s boot module at %"PRIpaddr"-%"PRIpaddr" (too
many)\n",
- boot_module_kind_as_string(kind), start, start + size);
- return NULL;
- }
-
- if ( check_reserved_regions_overlap(start, size) )
- return NULL;
-
- for ( i = 0 ; i < mods->nr_mods ; i++ )
- {
- mod = &mods->module[i];
- if ( mod->kind == kind && mod->start == start )
- {
- if ( !domU )
- mod->domU = false;
- return mod;
- }
- }
-
- mod = &mods->module[mods->nr_mods++];
- mod->kind = kind;
- mod->start = start;
- mod->size = size;
- mod->domU = domU;
-
- return mod;
-}
-
-/*
- * boot_module_find_by_kind can only be used to return Xen modules (e.g
- * XSM, DTB) or Dom0 modules. This is not suitable for looking up guest
- * modules.
- */
-struct bootmodule * __init boot_module_find_by_kind(bootmodule_kind kind)
-{
- struct bootmodules *mods = &bootinfo.modules;
- struct bootmodule *mod;
- int i;
- for (i = 0 ; i < mods->nr_mods ; i++ )
- {
- mod = &mods->module[i];
- if ( mod->kind == kind && !mod->domU )
- return mod;
- }
- return NULL;
-}
-
-void __init add_boot_cmdline(const char *name, const char *cmdline,
- bootmodule_kind kind, paddr_t start, bool domU)
-{
- struct bootcmdlines *cmds = &bootinfo.cmdlines;
- struct bootcmdline *cmd;
-
- if ( cmds->nr_mods == MAX_MODULES )
- {
- printk("Ignoring %s cmdline (too many)\n", name);
- return;
- }
-
- cmd = &cmds->cmdline[cmds->nr_mods++];
- cmd->kind = kind;
- cmd->domU = domU;
- cmd->start = start;
-
- ASSERT(strlen(name) <= DT_MAX_NAME);
- safe_strcpy(cmd->dt_name, name);
-
- if ( strlen(cmdline) > BOOTMOD_MAX_CMDLINE )
- panic("module %s command line too long\n", name);
- safe_strcpy(cmd->cmdline, cmdline);
-}
-
-/*
- * boot_cmdline_find_by_kind can only be used to return Xen modules (e.g
- * XSM, DTB) or Dom0 modules. This is not suitable for looking up guest
- * modules.
- */
-struct bootcmdline * __init boot_cmdline_find_by_kind(bootmodule_kind kind)
-{
- struct bootcmdlines *cmds = &bootinfo.cmdlines;
- struct bootcmdline *cmd;
- int i;
-
- for ( i = 0 ; i < cmds->nr_mods ; i++ )
- {
- cmd = &cmds->cmdline[i];
- if ( cmd->kind == kind && !cmd->domU )
- return cmd;
- }
- return NULL;
-}
-
-struct bootcmdline * __init boot_cmdline_find_by_name(const char *name)
-{
- struct bootcmdlines *mods = &bootinfo.cmdlines;
- struct bootcmdline *mod;
- unsigned int i;
-
- for (i = 0 ; i < mods->nr_mods ; i++ )
- {
- mod = &mods->cmdline[i];
- if ( strcmp(mod->dt_name, name) == 0 )
- return mod;
- }
- return NULL;
-}
-
-struct bootmodule * __init boot_module_find_by_addr_and_kind(bootmodule_kind
kind,
- paddr_t start)
-{
- struct bootmodules *mods = &bootinfo.modules;
- struct bootmodule *mod;
- unsigned int i;
-
- for (i = 0 ; i < mods->nr_mods ; i++ )
- {
- mod = &mods->module[i];
- if ( mod->kind == kind && mod->start == start )
- return mod;
- }
- return NULL;
-}
-
-const char * __init boot_module_kind_as_string(bootmodule_kind kind)
-{
- switch ( kind )
- {
- case BOOTMOD_XEN: return "Xen";
- case BOOTMOD_FDT: return "Device Tree";
- case BOOTMOD_KERNEL: return "Kernel";
- case BOOTMOD_RAMDISK: return "Ramdisk";
- case BOOTMOD_XSM: return "XSM";
- case BOOTMOD_GUEST_DTB: return "DTB";
- case BOOTMOD_UNKNOWN: return "Unknown";
- default: BUG();
- }
-}
-
void __init discard_initial_modules(void)
{
struct bootmodules *mi = &bootinfo.modules;
@@ -556,40 +239,6 @@ static void * __init relocate_fdt(paddr_t dtb_paddr,
size_t dtb_size)
return fdt;
}
-/*
- * Return the end of the non-module region starting at s. In other
- * words return s the start of the next modules after s.
- *
- * On input *end is the end of the region which should be considered
- * and it is updated to reflect the end of the module, clipped to the
- * end of the region if it would run over.
- */
-static paddr_t __init next_module(paddr_t s, paddr_t *end)
-{
- struct bootmodules *mi = &bootinfo.modules;
- paddr_t lowest = ~(paddr_t)0;
- int i;
-
- for ( i = 0; i < mi->nr_mods; i++ )
- {
- paddr_t mod_s = mi->module[i].start;
- paddr_t mod_e = mod_s + mi->module[i].size;
-
- if ( !mi->module[i].size )
- continue;
-
- if ( mod_s < s )
- continue;
- if ( mod_s > lowest )
- continue;
- if ( mod_s > *end )
- continue;
- lowest = mod_s;
- *end = min(*end, mod_e);
- }
- return lowest;
-}
-
void __init init_pdx(void)
{
const struct membanks *mem = bootinfo_get_mem();
@@ -635,87 +284,6 @@ void __init init_pdx(void)
}
}
-/*
- * Populate the boot allocator.
- * If a static heap was not provided by the admin, all the RAM but the
- * following regions will be added:
- * - Modules (e.g., Xen, Kernel)
- * - Reserved regions
- * - Xenheap (arm32 only)
- * If a static heap was provided by the admin, populate the boot
- * allocator with the corresponding regions only, but with Xenheap excluded
- * on arm32.
- */
-void __init populate_boot_allocator(void)
-{
- unsigned int i;
- const struct membanks *banks = bootinfo_get_mem();
- const struct membanks *reserved_mem = bootinfo_get_reserved_mem();
- paddr_t s, e;
-
- if ( bootinfo.static_heap )
- {
- for ( i = 0 ; i < reserved_mem->nr_banks; i++ )
- {
- if ( reserved_mem->bank[i].type != MEMBANK_STATIC_HEAP )
- continue;
-
- s = reserved_mem->bank[i].start;
- e = s + reserved_mem->bank[i].size;
-#ifdef CONFIG_ARM_32
- /* Avoid the xenheap, note that the xenheap cannot across a bank */
- if ( s <= mfn_to_maddr(directmap_mfn_start) &&
- e >= mfn_to_maddr(directmap_mfn_end) )
- {
- init_boot_pages(s, mfn_to_maddr(directmap_mfn_start));
- init_boot_pages(mfn_to_maddr(directmap_mfn_end), e);
- }
- else
-#endif
- init_boot_pages(s, e);
- }
-
- return;
- }
-
- for ( i = 0; i < banks->nr_banks; i++ )
- {
- const struct membank *bank = &banks->bank[i];
- paddr_t bank_end = bank->start + bank->size;
-
- s = bank->start;
- while ( s < bank_end )
- {
- paddr_t n = bank_end;
-
- e = next_module(s, &n);
-
- if ( e == ~(paddr_t)0 )
- e = n = bank_end;
-
- /*
- * Module in a RAM bank other than the one which we are
- * not dealing with here.
- */
- if ( e > bank_end )
- e = bank_end;
-
-#ifdef CONFIG_ARM_32
- /* Avoid the xenheap */
- if ( s < mfn_to_maddr(directmap_mfn_end) &&
- mfn_to_maddr(directmap_mfn_start) < e )
- {
- e = mfn_to_maddr(directmap_mfn_start);
- n = mfn_to_maddr(directmap_mfn_end);
- }
-#endif
-
- fw_unreserved_regions(s, e, init_boot_pages, 0);
- s = n;
- }
- }
-}
-
size_t __read_mostly dcache_line_bytes;
/* C entry point for boot CPU */
diff --git a/xen/common/Makefile b/xen/common/Makefile
index f12a474d40..7e66802a9e 100644
--- a/xen/common/Makefile
+++ b/xen/common/Makefile
@@ -6,7 +6,7 @@ obj-$(CONFIG_HYPFS_CONFIG) += config_data.o
obj-$(CONFIG_CORE_PARKING) += core_parking.o
obj-y += cpu.o
obj-$(CONFIG_DEBUG_TRACE) += debugtrace.o
-obj-$(CONFIG_HAS_DEVICE_TREE) += device_tree.o
+obj-$(CONFIG_HAS_DEVICE_TREE) += device-tree/
obj-$(CONFIG_IOREQ_SERVER) += dm.o
obj-y += domain.o
obj-$(CONFIG_OVERLAY_DTB) += dt-overlay.o
diff --git a/xen/common/device-tree/Makefile b/xen/common/device-tree/Makefile
new file mode 100644
index 0000000000..f813f7555f
--- /dev/null
+++ b/xen/common/device-tree/Makefile
@@ -0,0 +1,2 @@
+obj-y += bootinfo.init.o
+obj-y += device-tree.o
diff --git a/xen/common/device-tree/bootinfo.c
b/xen/common/device-tree/bootinfo.c
new file mode 100644
index 0000000000..f2e6a1145b
--- /dev/null
+++ b/xen/common/device-tree/bootinfo.c
@@ -0,0 +1,459 @@
+/* SPDX-License-Identifier: GPL-2.0-or-later */
+/*
+ * Derived from Xen 4.19's $xen/arch/arm/setup.c.
+ *
+ * bookkeeping routines.
+ *
+ * Tim Deegan <tim@xxxxxxx>
+ * Copyright (c) 2011 Citrix Systems.
+ * Copyright (c) 2024 Raptor Engineering LLC
+ */
+
+#include <xen/acpi.h>
+#include <xen/bootfdt.h>
+#include <xen/bug.h>
+#include <xen/device_tree.h>
+#include <xen/init.h>
+#include <xen/libfdt/libfdt-xen.h>
+#include <xen/mm.h>
+
+struct bootinfo __initdata bootinfo = BOOTINFO_INIT;
+
+const char * __init boot_module_kind_as_string(bootmodule_kind kind)
+{
+ switch ( kind )
+ {
+ case BOOTMOD_XEN: return "Xen";
+ case BOOTMOD_FDT: return "Device Tree";
+ case BOOTMOD_KERNEL: return "Kernel";
+ case BOOTMOD_RAMDISK: return "Ramdisk";
+ case BOOTMOD_XSM: return "XSM";
+ case BOOTMOD_GUEST_DTB: return "DTB";
+ case BOOTMOD_UNKNOWN: return "Unknown";
+ default: BUG();
+ }
+}
+
+static void __init dt_unreserved_regions(paddr_t s, paddr_t e,
+ void (*cb)(paddr_t ps, paddr_t pe),
+ unsigned int first)
+{
+ const struct membanks *reserved_mem = bootinfo_get_reserved_mem();
+#ifdef CONFIG_STATIC_SHM
+ const struct membanks *shmem = bootinfo_get_shmem();
+ unsigned int offset;
+#endif
+ unsigned int i;
+
+ /*
+ * i is the current bootmodule we are evaluating across all possible
+ * kinds.
+ */
+ for ( i = first; i < reserved_mem->nr_banks; i++ )
+ {
+ paddr_t r_s = reserved_mem->bank[i].start;
+ paddr_t r_e = r_s + reserved_mem->bank[i].size;
+
+ if ( s < r_e && r_s < e )
+ {
+ dt_unreserved_regions(r_e, e, cb, i + 1);
+ dt_unreserved_regions(s, r_s, cb, i + 1);
+ return;
+ }
+ }
+
+#ifdef CONFIG_STATIC_SHM
+ /*
+ * When retrieving the corresponding shared memory addresses
+ * below, we need to index the shmem->bank starting from 0, hence
+ * we need to use i - reserved_mem->nr_banks.
+ */
+ offset = reserved_mem->nr_banks;
+ for ( ; i - offset < shmem->nr_banks; i++ )
+ {
+ paddr_t r_s, r_e;
+
+ r_s = shmem->bank[i - offset].start;
+
+ /* Shared memory banks can contain INVALID_PADDR as start */
+ if ( INVALID_PADDR == r_s )
+ continue;
+
+ r_e = r_s + shmem->bank[i - offset].size;
+
+ if ( s < r_e && r_s < e )
+ {
+ dt_unreserved_regions(r_e, e, cb, i + 1);
+ dt_unreserved_regions(s, r_s, cb, i + 1);
+ return;
+ }
+ }
+#endif
+
+ cb(s, e);
+}
+
+/*
+ * TODO: '*_end' could be 0 if the bank/region is at the end of the physical
+ * address space. This is for now not handled as it requires more rework.
+ */
+static bool __init meminfo_overlap_check(const struct membanks *mem,
+ paddr_t region_start,
+ paddr_t region_size)
+{
+ paddr_t bank_start = INVALID_PADDR, bank_end = 0;
+ paddr_t region_end = region_start + region_size;
+ unsigned int i, bank_num = mem->nr_banks;
+
+ for ( i = 0; i < bank_num; i++ )
+ {
+ bank_start = mem->bank[i].start;
+ bank_end = bank_start + mem->bank[i].size;
+
+ if ( INVALID_PADDR == bank_start || region_end <= bank_start ||
+ region_start >= bank_end )
+ continue;
+ else
+ {
+ printk("Region: [%#"PRIpaddr", %#"PRIpaddr") overlapping with
bank[%u]: [%#"PRIpaddr", %#"PRIpaddr")\n",
+ region_start, region_end, i, bank_start, bank_end);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/*
+ * TODO: '*_end' could be 0 if the module/region is at the end of the physical
+ * address space. This is for now not handled as it requires more rework.
+ */
+static bool __init bootmodules_overlap_check(struct bootmodules *bootmodules,
+ paddr_t region_start,
+ paddr_t region_size)
+{
+ paddr_t mod_start = INVALID_PADDR, mod_end = 0;
+ paddr_t region_end = region_start + region_size;
+ unsigned int i, mod_num = bootmodules->nr_mods;
+
+ for ( i = 0; i < mod_num; i++ )
+ {
+ mod_start = bootmodules->module[i].start;
+ mod_end = mod_start + bootmodules->module[i].size;
+
+ if ( region_end <= mod_start || region_start >= mod_end )
+ continue;
+ else
+ {
+ printk("Region: [%#"PRIpaddr", %#"PRIpaddr") overlapping with
mod[%u]: [%#"PRIpaddr", %#"PRIpaddr")\n",
+ region_start, region_end, i, mod_start, mod_end);
+ return true;
+ }
+ }
+
+ return false;
+}
+
+void __init fw_unreserved_regions(paddr_t s, paddr_t e,
+ void (*cb)(paddr_t ps, paddr_t pe),
+ unsigned int first)
+{
+ if ( acpi_disabled )
+ dt_unreserved_regions(s, e, cb, first);
+ else
+ cb(s, e);
+}
+
+/*
+ * Given an input physical address range, check if this range is overlapping
+ * with the existing reserved memory regions defined in bootinfo.
+ * Return true if the input physical address range is overlapping with any
+ * existing reserved memory regions, otherwise false.
+ */
+bool __init check_reserved_regions_overlap(paddr_t region_start,
+ paddr_t region_size)
+{
+ const struct membanks *mem_banks[] = {
+ bootinfo_get_reserved_mem(),
+#ifdef CONFIG_ACPI
+ bootinfo_get_acpi(),
+#endif
+#ifdef CONFIG_STATIC_SHM
+ bootinfo_get_shmem(),
+#endif
+ };
+ unsigned int i;
+
+ /*
+ * Check if input region is overlapping with reserved memory banks or
+ * ACPI EfiACPIReclaimMemory (when ACPI feature is enabled) or static
+ * shared memory banks (when static shared memory feature is enabled)
+ */
+ for ( i = 0; i < ARRAY_SIZE(mem_banks); i++ )
+ if ( meminfo_overlap_check(mem_banks[i], region_start, region_size) )
+ return true;
+
+ /* Check if input region is overlapping with bootmodules */
+ if ( bootmodules_overlap_check(&bootinfo.modules,
+ region_start, region_size) )
+ return true;
+
+ return false;
+}
+
+struct bootmodule __init *add_boot_module(bootmodule_kind kind,
+ paddr_t start, paddr_t size,
+ bool domU)
+{
+ struct bootmodules *mods = &bootinfo.modules;
+ struct bootmodule *mod;
+ unsigned int i;
+
+ if ( mods->nr_mods == MAX_MODULES )
+ {
+ printk("Ignoring %s boot module at %"PRIpaddr"-%"PRIpaddr" (too
many)\n",
+ boot_module_kind_as_string(kind), start, start + size);
+ return NULL;
+ }
+
+ if ( check_reserved_regions_overlap(start, size) )
+ return NULL;
+
+ for ( i = 0 ; i < mods->nr_mods ; i++ )
+ {
+ mod = &mods->module[i];
+ if ( mod->kind == kind && mod->start == start )
+ {
+ if ( !domU )
+ mod->domU = false;
+ return mod;
+ }
+ }
+
+ mod = &mods->module[mods->nr_mods++];
+ mod->kind = kind;
+ mod->start = start;
+ mod->size = size;
+ mod->domU = domU;
+
+ return mod;
+}
+
+/*
+ * boot_module_find_by_kind can only be used to return Xen modules (e.g
+ * XSM, DTB) or Dom0 modules. This is not suitable for looking up guest
+ * modules.
+ */
+struct bootmodule * __init boot_module_find_by_kind(bootmodule_kind kind)
+{
+ struct bootmodules *mods = &bootinfo.modules;
+ struct bootmodule *mod;
+ int i;
+ for (i = 0 ; i < mods->nr_mods ; i++ )
+ {
+ mod = &mods->module[i];
+ if ( mod->kind == kind && !mod->domU )
+ return mod;
+ }
+ return NULL;
+}
+
+void __init add_boot_cmdline(const char *name, const char *cmdline,
+ bootmodule_kind kind, paddr_t start, bool domU)
+{
+ struct bootcmdlines *cmds = &bootinfo.cmdlines;
+ struct bootcmdline *cmd;
+
+ if ( cmds->nr_mods == MAX_MODULES )
+ {
+ printk("Ignoring %s cmdline (too many)\n", name);
+ return;
+ }
+
+ cmd = &cmds->cmdline[cmds->nr_mods++];
+ cmd->kind = kind;
+ cmd->domU = domU;
+ cmd->start = start;
+
+ ASSERT(strlen(name) <= DT_MAX_NAME);
+ safe_strcpy(cmd->dt_name, name);
+
+ if ( strlen(cmdline) > BOOTMOD_MAX_CMDLINE )
+ panic("module %s command line too long\n", name);
+ safe_strcpy(cmd->cmdline, cmdline);
+}
+
+/*
+ * boot_cmdline_find_by_kind can only be used to return Xen modules (e.g
+ * XSM, DTB) or Dom0 modules. This is not suitable for looking up guest
+ * modules.
+ */
+struct bootcmdline * __init boot_cmdline_find_by_kind(bootmodule_kind kind)
+{
+ struct bootcmdlines *cmds = &bootinfo.cmdlines;
+ struct bootcmdline *cmd;
+ int i;
+
+ for ( i = 0 ; i < cmds->nr_mods ; i++ )
+ {
+ cmd = &cmds->cmdline[i];
+ if ( cmd->kind == kind && !cmd->domU )
+ return cmd;
+ }
+ return NULL;
+}
+
+struct bootcmdline * __init boot_cmdline_find_by_name(const char *name)
+{
+ struct bootcmdlines *mods = &bootinfo.cmdlines;
+ struct bootcmdline *mod;
+ unsigned int i;
+
+ for (i = 0 ; i < mods->nr_mods ; i++ )
+ {
+ mod = &mods->cmdline[i];
+ if ( strcmp(mod->dt_name, name) == 0 )
+ return mod;
+ }
+ return NULL;
+}
+
+struct bootmodule * __init boot_module_find_by_addr_and_kind(bootmodule_kind
kind,
+ paddr_t start)
+{
+ struct bootmodules *mods = &bootinfo.modules;
+ struct bootmodule *mod;
+ unsigned int i;
+
+ for (i = 0 ; i < mods->nr_mods ; i++ )
+ {
+ mod = &mods->module[i];
+ if ( mod->kind == kind && mod->start == start )
+ return mod;
+ }
+ return NULL;
+}
+
+/*
+ * Return the end of the non-module region starting at s. In other
+ * words return s the start of the next modules after s.
+ *
+ * On input *end is the end of the region which should be considered
+ * and it is updated to reflect the end of the module, clipped to the
+ * end of the region if it would run over.
+ */
+static paddr_t __init next_module(paddr_t s, paddr_t *end)
+{
+ struct bootmodules *mi = &bootinfo.modules;
+ paddr_t lowest = ~(paddr_t)0;
+ int i;
+
+ for ( i = 0; i < mi->nr_mods; i++ )
+ {
+ paddr_t mod_s = mi->module[i].start;
+ paddr_t mod_e = mod_s + mi->module[i].size;
+
+ if ( !mi->module[i].size )
+ continue;
+
+ if ( mod_s < s )
+ continue;
+ if ( mod_s > lowest )
+ continue;
+ if ( mod_s > *end )
+ continue;
+ lowest = mod_s;
+ *end = min(*end, mod_e);
+ }
+ return lowest;
+}
+
+/*
+ * Populate the boot allocator.
+ * If a static heap was not provided by the admin, all the RAM but the
+ * following regions will be added:
+ * - Modules (e.g., Xen, Kernel)
+ * - Reserved regions
+ * - Xenheap (CONFIG_SEPARATE_XENHEAP only)
+ * If a static heap was provided by the admin, populate the boot
+ * allocator with the corresponding regions only, but with Xenheap excluded
+ * on CONFIG_SEPARATE_XENHEAP.
+ */
+void __init populate_boot_allocator(void)
+{
+ unsigned int i;
+ const struct membanks *banks = bootinfo_get_mem();
+ const struct membanks *reserved_mem = bootinfo_get_reserved_mem();
+ paddr_t s, e;
+
+ if ( bootinfo.static_heap )
+ {
+ for ( i = 0 ; i < reserved_mem->nr_banks; i++ )
+ {
+ if ( reserved_mem->bank[i].type != MEMBANK_STATIC_HEAP )
+ continue;
+
+ s = reserved_mem->bank[i].start;
+ e = s + reserved_mem->bank[i].size;
+#ifdef CONFIG_SEPARATE_XENHEAP
+ /* Avoid the xenheap, note that the xenheap cannot across a bank */
+ if ( s <= mfn_to_maddr(directmap_mfn_start) &&
+ e >= mfn_to_maddr(directmap_mfn_end) )
+ {
+ init_boot_pages(s, mfn_to_maddr(directmap_mfn_start));
+ init_boot_pages(mfn_to_maddr(directmap_mfn_end), e);
+ }
+ else
+#endif
+ init_boot_pages(s, e);
+ }
+
+ return;
+ }
+
+ for ( i = 0; i < banks->nr_banks; i++ )
+ {
+ const struct membank *bank = &banks->bank[i];
+ paddr_t bank_end = bank->start + bank->size;
+
+ s = bank->start;
+ while ( s < bank_end )
+ {
+ paddr_t n = bank_end;
+
+ e = next_module(s, &n);
+
+ if ( e == ~(paddr_t)0 )
+ e = n = bank_end;
+
+ /*
+ * Module in a RAM bank other than the one which we are
+ * not dealing with here.
+ */
+ if ( e > bank_end )
+ e = bank_end;
+
+#ifdef CONFIG_SEPARATE_XENHEAP
+ /* Avoid the xenheap */
+ if ( s < mfn_to_maddr(directmap_mfn_end) &&
+ mfn_to_maddr(directmap_mfn_start) < e )
+ {
+ e = mfn_to_maddr(directmap_mfn_start);
+ n = mfn_to_maddr(directmap_mfn_end);
+ }
+#endif
+
+ fw_unreserved_regions(s, e, init_boot_pages, 0);
+ s = n;
+ }
+ }
+}
+
+/*
+ * Local variables:
+ * mode: C
+ * c-file-style: "BSD"
+ * c-basic-offset: 4
+ * indent-tabs-mode: nil
+ * End:
+ */
diff --git a/xen/common/device-tree/device-tree.c
b/xen/common/device-tree/device-tree.c
new file mode 100644
index 0000000000..8d1017a49d
--- /dev/null
+++ b/xen/common/device-tree/device-tree.c
@@ -0,0 +1,2253 @@
+/*
+ * Device Tree
+ *
+ * Copyright (C) 2012 Citrix Systems, Inc.
+ * Copyright 2009 Benjamin Herrenschmidt, IBM Corp
+ * benh@xxxxxxxxxxxxxxxxxxx
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ */
+
+#include <xen/types.h>
+#include <xen/init.h>
+#include <xen/guest_access.h>
+#include <xen/device_tree.h>
+#include <xen/kernel.h>
+#include <xen/lib.h>
+#include <xen/libfdt/libfdt.h>
+#include <xen/mm.h>
+#include <xen/stdarg.h>
+#include <xen/string.h>
+#include <xen/cpumask.h>
+#include <xen/ctype.h>
+#include <asm/setup.h>
+#include <xen/err.h>
+
+const void *device_tree_flattened;
+dt_irq_xlate_func dt_irq_xlate;
+/* Host device tree */
+struct dt_device_node *dt_host;
+/* Interrupt controller node*/
+const struct dt_device_node *dt_interrupt_controller;
+DEFINE_RWLOCK(dt_host_lock);
+
+/**
+ * struct dt_alias_prop - Alias property in 'aliases' node
+ * @link: List node to link the structure in aliases_lookup list
+ * @alias: Alias property name
+ * @np: Pointer to device_node that the alias stands for
+ * @id: Index value from end of alias name
+ * @stem: Alias string without the index
+ *
+ * The structure represents one alias property of 'aliases' node as
+ * an entry in aliases_lookup list.
+ */
+struct dt_alias_prop {
+ struct list_head link;
+ const char *alias;
+ struct dt_device_node *np;
+ int id;
+ char stem[0];
+};
+
+static LIST_HEAD(aliases_lookup);
+
+#ifdef CONFIG_DEVICE_TREE_DEBUG
+static void dt_dump_addr(const char *s, const __be32 *addr, int na)
+{
+ dt_dprintk("%s", s);
+ while ( na-- )
+ dt_dprintk(" %08x", be32_to_cpu(*(addr++)));
+ dt_dprintk("\n");
+}
+#else
+static void dt_dump_addr(const char *s, const __be32 *addr, int na) { }
+#endif
+
+#define DT_BAD_ADDR ((u64)-1)
+
+/* Max address size we deal with */
+#define DT_MAX_ADDR_CELLS 4
+#define DT_CHECK_ADDR_COUNT(na) ((na) > 0 && (na) <= DT_MAX_ADDR_CELLS)
+#define DT_CHECK_COUNTS(na, ns) (DT_CHECK_ADDR_COUNT(na) && (ns) > 0)
+
+/* Callbacks for bus specific translators */
+struct dt_bus
+{
+ const char *name;
+ const char *addresses;
+ bool (*match)(const struct dt_device_node *node);
+ void (*count_cells)(const struct dt_device_node *child,
+ int *addrc, int *sizec);
+ u64 (*map)(__be32 *addr, const __be32 *range, int na, int ns, int pna);
+ int (*translate)(__be32 *addr, u64 offset, int na);
+ unsigned int (*get_flags)(const __be32 *addr);
+};
+
+void dt_get_range(const __be32 **cellp, const struct dt_device_node *np,
+ u64 *address, u64 *size)
+{
+ *address = dt_next_cell(dt_n_addr_cells(np), cellp);
+ *size = dt_next_cell(dt_n_size_cells(np), cellp);
+}
+
+void dt_set_cell(__be32 **cellp, int size, u64 val)
+{
+ int cells = size;
+
+ while ( size-- )
+ {
+ (*cellp)[size] = cpu_to_fdt32(val);
+ val >>= 32;
+ }
+
+ (*cellp) += cells;
+}
+
+void dt_set_range(__be32 **cellp, const struct dt_device_node *np,
+ u64 address, u64 size)
+{
+ dt_set_cell(cellp, dt_n_addr_cells(np), address);
+ dt_set_cell(cellp, dt_n_size_cells(np), size);
+}
+
+void dt_child_set_range(__be32 **cellp, int addrcells, int sizecells,
+ u64 address, u64 size)
+{
+ dt_set_cell(cellp, addrcells, address);
+ dt_set_cell(cellp, sizecells, size);
+}
+
+static void __init *unflatten_dt_alloc(unsigned long *mem, unsigned long size,
+ unsigned long align)
+{
+ void *res;
+
+ *mem = ROUNDUP(*mem, align);
+ res = (void *)*mem;
+ *mem += size;
+
+ return res;
+}
+
+/* Find a property with a given name for a given node and return it. */
+const struct dt_property *dt_find_property(const struct dt_device_node *np,
+ const char *name, u32 *lenp)
+{
+ const struct dt_property *pp;
+
+ if ( !np )
+ return NULL;
+
+ for ( pp = np->properties; pp; pp = pp->next )
+ {
+ if ( dt_prop_cmp(pp->name, name) == 0 )
+ {
+ if ( lenp )
+ *lenp = pp->length;
+ break;
+ }
+ }
+
+ return pp;
+}
+
+const void *dt_get_property(const struct dt_device_node *np,
+ const char *name, u32 *lenp)
+{
+ const struct dt_property *pp = dt_find_property(np, name, lenp);
+
+ return pp ? pp->value : NULL;
+}
+
+bool dt_property_read_u32(const struct dt_device_node *np,
+ const char *name, u32 *out_value)
+{
+ u32 len;
+ const __be32 *val;
+
+ val = dt_get_property(np, name, &len);
+ if ( !val || len < sizeof(*out_value) )
+ return 0;
+
+ *out_value = be32_to_cpup(val);
+
+ return 1;
+}
+
+
+bool dt_property_read_u64(const struct dt_device_node *np,
+ const char *name, u64 *out_value)
+{
+ u32 len;
+ const __be32 *val;
+
+ val = dt_get_property(np, name, &len);
+ if ( !val || len < sizeof(*out_value) )
+ return 0;
+
+ *out_value = dt_read_number(val, 2);
+
+ return 1;
+}
+int dt_property_read_string(const struct dt_device_node *np,
+ const char *propname, const char **out_string)
+{
+ const struct dt_property *pp = dt_find_property(np, propname, NULL);
+
+ if ( !pp )
+ return -EINVAL;
+ if ( !pp->length )
+ return -ENODATA;
+ if ( strnlen(pp->value, pp->length) >= pp->length )
+ return -EILSEQ;
+
+ *out_string = pp->value;
+
+ return 0;
+}
+
+/**
+ * dt_find_property_value_of_size
+ *
+ * @np: device node from which the property value is to be read.
+ * @propname: name of the property to be searched.
+ * @min: minimum allowed length of property value
+ * @max: maximum allowed length of property value (0 means unlimited)
+ * @len: if !=NULL, actual length is written to here
+ *
+ * Search for a property in a device node and valid the requested size.
+ *
+ * Return: The property value on success, -EINVAL if the property does not
+ * exist, -ENODATA if property does not have a value, and -EOVERFLOW if the
+ * property data is too small or too large.
+ */
+static void *dt_find_property_value_of_size(const struct dt_device_node *np,
+ const char *propname, u32 min,
+ u32 max, size_t *len)
+{
+ const struct dt_property *prop = dt_find_property(np, propname, NULL);
+
+ if ( !prop )
+ return ERR_PTR(-EINVAL);
+ if ( !prop->value )
+ return ERR_PTR(-ENODATA);
+ if ( prop->length < min )
+ return ERR_PTR(-EOVERFLOW);
+ if ( max && prop->length > max )
+ return ERR_PTR(-EOVERFLOW);
+
+ if ( len )
+ *len = prop->length;
+
+ return prop->value;
+}
+
+int dt_property_read_variable_u32_array(const struct dt_device_node *np,
+ const char *propname, u32 *out_values,
+ size_t sz_min, size_t sz_max)
+{
+ size_t sz, count;
+ const __be32 *val = dt_find_property_value_of_size(np, propname,
+ (sz_min * sizeof(*out_values)),
+ (sz_max * sizeof(*out_values)),
+ &sz);
+
+ if ( IS_ERR(val) )
+ return PTR_ERR(val);
+
+ if ( !sz_max )
+ sz = sz_min;
+ else
+ sz /= sizeof(*out_values);
+
+ count = sz;
+ while ( count-- )
+ *out_values++ = be32_to_cpup(val++);
+
+ return sz;
+}
+
+int dt_property_match_string(const struct dt_device_node *np,
+ const char *propname, const char *string)
+{
+ const struct dt_property *dtprop = dt_find_property(np, propname, NULL);
+ size_t l;
+ int i;
+ const char *p, *end;
+
+ if ( !dtprop )
+ return -EINVAL;
+ if ( !dtprop->value )
+ return -ENODATA;
+
+ p = dtprop->value;
+ end = p + dtprop->length;
+
+ for ( i = 0; p < end; i++, p += l )
+ {
+ l = strnlen(p, end - p) + 1;
+ if ( p + l > end )
+ return -EILSEQ;
+ if ( strcmp(string, p) == 0 )
+ return i; /* Found it; return index */
+ }
+ return -ENODATA;
+}
+
+bool dt_device_is_compatible(const struct dt_device_node *device,
+ const char *compat)
+{
+ const char* cp;
+ u32 cplen, l;
+
+ cp = dt_get_property(device, "compatible", &cplen);
+ if ( cp == NULL )
+ return 0;
+ while ( cplen > 0 )
+ {
+ if ( dt_compat_cmp(cp, compat) == 0 )
+ return 1;
+ l = strlen(cp) + 1;
+ cp += l;
+ cplen -= l;
+ }
+
+ return 0;
+}
+
+bool dt_machine_is_compatible(const char *compat)
+{
+ const struct dt_device_node *root;
+ bool rc = false;
+
+ root = dt_find_node_by_path("/");
+ if ( root )
+ {
+ rc = dt_device_is_compatible(root, compat);
+ }
+ return rc;
+}
+
+struct dt_device_node *dt_find_node_by_name(struct dt_device_node *from,
+ const char *name)
+{
+ struct dt_device_node *np;
+ struct dt_device_node *dt;
+
+ dt = from ? from->allnext : dt_host;
+ dt_for_each_device_node(dt, np)
+ if ( np->name && (dt_node_cmp(np->name, name) == 0) )
+ break;
+
+ return np;
+}
+
+struct dt_device_node *dt_find_node_by_type(struct dt_device_node *from,
+ const char *type)
+{
+ struct dt_device_node *np;
+ struct dt_device_node *dt;
+
+ dt = from ? from->allnext : dt_host;
+ dt_for_each_device_node(dt, np)
+ if ( np->type && (dt_node_cmp(np->type, type) == 0) )
+ break;
+
+ return np;
+}
+
+struct dt_device_node *dt_find_node_by_path_from(struct dt_device_node *from,
+ const char *path)
+{
+ struct dt_device_node *np;
+
+ dt_for_each_device_node(from, np)
+ if ( np->full_name && (dt_node_cmp(np->full_name, path) == 0) )
+ break;
+
+ return np;
+}
+
+int dt_find_node_by_gpath(XEN_GUEST_HANDLE(char) u_path, uint32_t u_plen,
+ struct dt_device_node **node)
+{
+ char *path;
+
+ path = safe_copy_string_from_guest(u_path, u_plen, PAGE_SIZE);
+ if ( IS_ERR(path) )
+ return PTR_ERR(path);
+
+ *node = dt_find_node_by_path(path);
+
+ xfree(path);
+
+ return (*node == NULL) ? -ESRCH : 0;
+}
+
+struct dt_device_node *dt_find_node_by_alias(const char *alias)
+{
+ const struct dt_alias_prop *app;
+
+ list_for_each_entry( app, &aliases_lookup, link )
+ {
+ if ( !strcmp(app->alias, alias) )
+ return app->np;
+ }
+
+ return NULL;
+}
+
+const struct dt_device_match *
+dt_match_node(const struct dt_device_match *matches,
+ const struct dt_device_node *node)
+{
+ if ( !matches )
+ return NULL;
+
+ while ( matches->path || matches->type ||
+ matches->compatible || matches->not_available || matches->prop )
+ {
+ bool match = true;
+
+ if ( matches->path )
+ match &= dt_node_path_is_equal(node, matches->path);
+
+ if ( matches->type )
+ match &= dt_device_type_is_equal(node, matches->type);
+
+ if ( matches->compatible )
+ match &= dt_device_is_compatible(node, matches->compatible);
+
+ if ( matches->not_available )
+ match &= !dt_device_is_available(node);
+
+ if ( matches->prop )
+ match &= dt_find_property(node, matches->prop, NULL) != NULL;
+
+ if ( match )
+ return matches;
+ matches++;
+ }
+
+ return NULL;
+}
+
+const struct dt_device_node *dt_get_parent(const struct dt_device_node *node)
+{
+ if ( !node )
+ return NULL;
+
+ return node->parent;
+}
+
+struct dt_device_node *
+dt_find_compatible_node(struct dt_device_node *from,
+ const char *type,
+ const char *compatible)
+{
+ struct dt_device_node *np;
+ struct dt_device_node *dt;
+
+ dt = from ? from->allnext : dt_host;
+ dt_for_each_device_node(dt, np)
+ {
+ if ( type
+ && !(np->type && (dt_node_cmp(np->type, type) == 0)) )
+ continue;
+ if ( dt_device_is_compatible(np, compatible) )
+ break;
+ }
+
+ return np;
+}
+
+struct dt_device_node *
+dt_find_matching_node(struct dt_device_node *from,
+ const struct dt_device_match *matches)
+{
+ struct dt_device_node *np;
+ struct dt_device_node *dt;
+
+ dt = from ? from->allnext : dt_host;
+ dt_for_each_device_node(dt, np)
+ {
+ if ( dt_match_node(matches, np) )
+ return np;
+ }
+
+ return NULL;
+}
+
+static int __dt_n_addr_cells(const struct dt_device_node *np, bool parent)
+{
+ const __be32 *ip;
+
+ do {
+ if ( np->parent && !parent )
+ np = np->parent;
+ parent = false;
+
+ ip = dt_get_property(np, "#address-cells", NULL);
+ if ( ip )
+ return be32_to_cpup(ip);
+ } while ( np->parent );
+ /* No #address-cells property for the root node */
+ return DT_ROOT_NODE_ADDR_CELLS_DEFAULT;
+}
+
+static int __dt_n_size_cells(const struct dt_device_node *np, bool parent)
+{
+ const __be32 *ip;
+
+ do {
+ if ( np->parent && !parent )
+ np = np->parent;
+ parent = false;
+
+ ip = dt_get_property(np, "#size-cells", NULL);
+ if ( ip )
+ return be32_to_cpup(ip);
+ } while ( np->parent );
+ /* No #address-cells property for the root node */
+ return DT_ROOT_NODE_SIZE_CELLS_DEFAULT;
+}
+
+int dt_n_addr_cells(const struct dt_device_node *np)
+{
+ return __dt_n_addr_cells(np, false);
+}
+
+int dt_n_size_cells(const struct dt_device_node *np)
+{
+ return __dt_n_size_cells(np, false);
+}
+
+int dt_child_n_addr_cells(const struct dt_device_node *parent)
+{
+ return __dt_n_addr_cells(parent, true);
+}
+
+int dt_child_n_size_cells(const struct dt_device_node *parent)
+{
+ return __dt_n_size_cells(parent, true);
+}
+
+/*
+ * These are defined in Linux where much of this code comes from, but
+ * are currently unused outside this file in the context of Xen.
+ */
+#define IORESOURCE_BITS 0x000000ff /* Bus-specific bits */
+
+#define IORESOURCE_TYPE_BITS 0x00001f00 /* Resource type */
+#define IORESOURCE_IO 0x00000100 /* PCI/ISA I/O ports */
+#define IORESOURCE_MEM 0x00000200
+#define IORESOURCE_REG 0x00000300 /* Register offsets */
+#define IORESOURCE_IRQ 0x00000400
+#define IORESOURCE_DMA 0x00000800
+#define IORESOURCE_BUS 0x00001000
+
+#define IORESOURCE_PREFETCH 0x00002000 /* No side effects */
+#define IORESOURCE_READONLY 0x00004000
+#define IORESOURCE_CACHEABLE 0x00008000
+#define IORESOURCE_RANGELENGTH 0x00010000
+#define IORESOURCE_SHADOWABLE 0x00020000
+
+/*
+ * Default translator (generic bus)
+ */
+static bool dt_bus_default_match(const struct dt_device_node *node)
+{
+ /* Root node doesn't have "ranges" property */
+ if ( node->parent == NULL )
+ return 1;
+
+ /* The default bus is only used when the "ranges" property exists.
+ * Otherwise we can't translate the address
+ */
+ return (dt_get_property(node, "ranges", NULL) != NULL);
+}
+
+static void dt_bus_default_count_cells(const struct dt_device_node *dev,
+ int *addrc, int *sizec)
+{
+ if ( addrc )
+ *addrc = dt_n_addr_cells(dev);
+ if ( sizec )
+ *sizec = dt_n_size_cells(dev);
+}
+
+static u64 dt_bus_default_map(__be32 *addr, const __be32 *range,
+ int na, int ns, int pna)
+{
+ u64 cp, s, da;
+
+ cp = dt_read_number(range, na);
+ s = dt_read_number(range + na + pna, ns);
+ da = dt_read_number(addr, na);
+
+ dt_dprintk("DT: default map, cp=%llx, s=%llx, da=%llx\n",
+ (unsigned long long)cp, (unsigned long long)s,
+ (unsigned long long)da);
+
+ /*
+ * If the number of address cells is larger than 2 we assume the
+ * mapping doesn't specify a physical address. Rather, the address
+ * specifies an identifier that must match exactly.
+ */
+ if ( na > 2 && memcmp(range, addr, na * 4) != 0 )
+ return DT_BAD_ADDR;
+
+ if ( da < cp || da >= (cp + s) )
+ return DT_BAD_ADDR;
+ return da - cp;
+}
+
+static int dt_bus_default_translate(__be32 *addr, u64 offset, int na)
+{
+ u64 a = dt_read_number(addr, na);
+
+ memset(addr, 0, na * 4);
+ a += offset;
+ if ( na > 1 )
+ addr[na - 2] = cpu_to_be32(a >> 32);
+ addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
+
+ return 0;
+}
+static unsigned int dt_bus_default_get_flags(const __be32 *addr)
+{
+ return IORESOURCE_MEM;
+}
+
+/*
+ * PCI bus specific translator
+ */
+
+static bool dt_node_is_pci(const struct dt_device_node *np)
+{
+ bool is_pci = !strcmp(np->name, "pcie") || !strcmp(np->name, "pci");
+
+ if ( is_pci )
+ printk(XENLOG_WARNING "%s: Missing device_type\n", np->full_name);
+
+ return is_pci;
+}
+
+static bool dt_bus_pci_match(const struct dt_device_node *np)
+{
+ /*
+ * "pciex" is PCI Express "vci" is for the /chaos bridge on 1st-gen PCI
+ * powermacs "ht" is hypertransport
+ *
+ * If none of the device_type match, and that the node name is
+ * "pcie" or "pci", accept the device as PCI (with a warning).
+ */
+ return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
+ !strcmp(np->type, "vci") || !strcmp(np->type, "ht") ||
+ dt_node_is_pci(np);
+}
+
+static void dt_bus_pci_count_cells(const struct dt_device_node *np,
+ int *addrc, int *sizec)
+{
+ if (addrc)
+ *addrc = 3;
+ if (sizec)
+ *sizec = 2;
+}
+
+static unsigned int dt_bus_pci_get_flags(const __be32 *addr)
+{
+ unsigned int flags = 0;
+ u32 w = be32_to_cpup(addr);
+
+ switch((w >> 24) & 0x03) {
+ case 0x01:
+ flags |= IORESOURCE_IO;
+ break;
+ case 0x02: /* 32 bits */
+ case 0x03: /* 64 bits */
+ flags |= IORESOURCE_MEM;
+ break;
+ }
+ if (w & 0x40000000)
+ flags |= IORESOURCE_PREFETCH;
+ return flags;
+}
+
+static u64 dt_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
+ int pna)
+{
+ u64 cp, s, da;
+ unsigned int af, rf;
+
+ af = dt_bus_pci_get_flags(addr);
+ rf = dt_bus_pci_get_flags(range);
+
+ /* Check address type match */
+ if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
+ return DT_BAD_ADDR;
+
+ /* Read address values, skipping high cell */
+ cp = dt_read_number(range + 1, na - 1);
+ s = dt_read_number(range + na + pna, ns);
+ da = dt_read_number(addr + 1, na - 1);
+
+ dt_dprintk("DT: PCI map, cp=%llx, s=%llx, da=%llx\n",
+ (unsigned long long)cp, (unsigned long long)s,
+ (unsigned long long)da);
+
+ if (da < cp || da >= (cp + s))
+ return DT_BAD_ADDR;
+ return da - cp;
+}
+
+static int dt_bus_pci_translate(__be32 *addr, u64 offset, int na)
+{
+ return dt_bus_default_translate(addr + 1, offset, na - 1);
+}
+
+/*
+ * Array of bus specific translators
+ */
+static const struct dt_bus dt_busses[] =
+{
+ /* PCI */
+ {
+ .name = "pci",
+ .addresses = "assigned-addresses",
+ .match = dt_bus_pci_match,
+ .count_cells = dt_bus_pci_count_cells,
+ .map = dt_bus_pci_map,
+ .translate = dt_bus_pci_translate,
+ .get_flags = dt_bus_pci_get_flags,
+ },
+ /* Default */
+ {
+ .name = "default",
+ .addresses = "reg",
+ .match = dt_bus_default_match,
+ .count_cells = dt_bus_default_count_cells,
+ .map = dt_bus_default_map,
+ .translate = dt_bus_default_translate,
+ .get_flags = dt_bus_default_get_flags,
+ },
+};
+
+static const struct dt_bus *dt_match_bus(const struct dt_device_node *np)
+{
+ int i;
+
+ for ( i = 0; i < ARRAY_SIZE(dt_busses); i++ )
+ if ( !dt_busses[i].match || dt_busses[i].match(np) )
+ return &dt_busses[i];
+
+ return NULL;
+}
+
+static const __be32 *dt_get_address(const struct dt_device_node *dev,
+ unsigned int index, u64 *size,
+ unsigned int *flags)
+{
+ const __be32 *prop;
+ u32 psize;
+ const struct dt_device_node *parent;
+ const struct dt_bus *bus;
+ int onesize, i, na, ns;
+
+ /* Get parent & match bus type */
+ parent = dt_get_parent(dev);
+ if ( parent == NULL )
+ return NULL;
+
+ bus = dt_match_bus(parent);
+ if ( !bus )
+ return NULL;
+ bus->count_cells(dev, &na, &ns);
+
+ if ( !DT_CHECK_ADDR_COUNT(na) )
+ return NULL;
+
+ /* Get "reg" or "assigned-addresses" property */
+ prop = dt_get_property(dev, bus->addresses, &psize);
+ if ( prop == NULL )
+ return NULL;
+ psize /= 4;
+
+ onesize = na + ns;
+ for ( i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++ )
+ {
+ if ( i == index )
+ {
+ if ( size )
+ *size = dt_read_number(prop + na, ns);
+ if ( flags )
+ *flags = bus->get_flags(prop);
+ return prop;
+ }
+ }
+ return NULL;
+}
+
+static int dt_translate_one(const struct dt_device_node *parent,
+ const struct dt_bus *bus,
+ const struct dt_bus *pbus,
+ __be32 *addr, int na, int ns,
+ int pna, const char *rprop)
+{
+ const __be32 *ranges;
+ unsigned int rlen;
+ int rone;
+ u64 offset = DT_BAD_ADDR;
+
+ ranges = dt_get_property(parent, rprop, &rlen);
+ if ( ranges == NULL )
+ {
+ printk(XENLOG_ERR "DT: no ranges; cannot translate\n");
+ return 1;
+ }
+ if ( rlen == 0 )
+ {
+ offset = dt_read_number(addr, na);
+ memset(addr, 0, pna * 4);
+ dt_dprintk("DT: empty ranges; 1:1 translation\n");
+ goto finish;
+ }
+
+ dt_dprintk("DT: walking ranges...\n");
+
+ /* Now walk through the ranges */
+ rlen /= 4;
+ rone = na + pna + ns;
+ for ( ; rlen >= rone; rlen -= rone, ranges += rone )
+ {
+ offset = bus->map(addr, ranges, na, ns, pna);
+ if ( offset != DT_BAD_ADDR )
+ break;
+ }
+ if ( offset == DT_BAD_ADDR )
+ {
+ dt_dprintk("DT: not found !\n");
+ return 1;
+ }
+ memcpy(addr, ranges + na, 4 * pna);
+
+finish:
+ dt_dump_addr("DT: parent translation for:", addr, pna);
+ dt_dprintk("DT: with offset: %llx\n", (unsigned long long)offset);
+
+ /* Translate it into parent bus space */
+ return pbus->translate(addr, offset, pna);
+}
+
+/*
+ * Translate an address from the device-tree into a CPU physical address,
+ * this walks up the tree and applies the various bus mappings on the
+ * way.
+ *
+ * Note: We consider that crossing any level with #size-cells == 0 to mean
+ * that translation is impossible (that is we are not dealing with a value
+ * that can be mapped to a cpu physical address). This is not really specified
+ * that way, but this is traditionally the way IBM at least do things
+ */
+static u64 __dt_translate_address(const struct dt_device_node *dev,
+ const __be32 *in_addr, const char *rprop)
+{
+ const struct dt_device_node *parent = NULL;
+ const struct dt_bus *bus, *pbus;
+ __be32 addr[DT_MAX_ADDR_CELLS];
+ int na, ns, pna, pns;
+ u64 result = DT_BAD_ADDR;
+
+ dt_dprintk("DT: ** translation for device %s **\n", dev->full_name);
+
+ /* Get parent & match bus type */
+ parent = dt_get_parent(dev);
+ if ( parent == NULL )
+ goto bail;
+ bus = dt_match_bus(parent);
+ if ( !bus )
+ goto bail;
+
+ /* Count address cells & copy address locally */
+ bus->count_cells(dev, &na, &ns);
+ if ( !DT_CHECK_COUNTS(na, ns) )
+ {
+ printk(XENLOG_ERR "dt_parse: Bad cell count for device %s\n",
+ dev->full_name);
+ goto bail;
+ }
+ memcpy(addr, in_addr, na * 4);
+
+ dt_dprintk("DT: bus is %s (na=%d, ns=%d) on %s\n",
+ bus->name, na, ns, parent->full_name);
+ dt_dump_addr("DT: translating address:", addr, na);
+
+ /* Translate */
+ for ( ;; )
+ {
+ /* Switch to parent bus */
+ dev = parent;
+ parent = dt_get_parent(dev);
+
+ /* If root, we have finished */
+ if ( parent == NULL )
+ {
+ dt_dprintk("DT: reached root node\n");
+ result = dt_read_number(addr, na);
+ break;
+ }
+
+ /* Get new parent bus and counts */
+ pbus = dt_match_bus(parent);
+ if ( pbus == NULL )
+ {
+ printk("DT: %s is not a valid bus\n", parent->full_name);
+ break;
+ }
+ pbus->count_cells(dev, &pna, &pns);
+ if ( !DT_CHECK_COUNTS(pna, pns) )
+ {
+ printk(XENLOG_ERR "dt_parse: Bad cell count for parent %s\n",
+ dev->full_name);
+ break;
+ }
+
+ dt_dprintk("DT: parent bus is %s (na=%d, ns=%d) on %s\n",
+ pbus->name, pna, pns, parent->full_name);
+
+ /* Apply bus translation */
+ if ( dt_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop) )
+ break;
+
+ /* Complete the move up one level */
+ na = pna;
+ ns = pns;
+ bus = pbus;
+
+ dt_dump_addr("DT: one level translation:", addr, na);
+ }
+
+bail:
+ return result;
+}
+
+/* dt_device_address - Translate device tree address and return it */
+int dt_device_get_address(const struct dt_device_node *dev, unsigned int index,
+ u64 *addr, u64 *size)
+{
+ const __be32 *addrp;
+ unsigned int flags;
+
+ addrp = dt_get_address(dev, index, size, &flags);
+ if ( addrp == NULL )
+ return -EINVAL;
+
+ if ( !addr )
+ return -EINVAL;
+
+ *addr = __dt_translate_address(dev, addrp, "ranges");
+
+ if ( *addr == DT_BAD_ADDR )
+ return -EINVAL;
+
+ return 0;
+}
+
+int dt_device_get_paddr(const struct dt_device_node *dev, unsigned int index,
+ paddr_t *addr, paddr_t *size)
+{
+ uint64_t dt_addr, dt_size;
+ int ret;
+
+ ret = dt_device_get_address(dev, index, &dt_addr, &dt_size);
+ if ( ret )
+ return ret;
+
+ if ( !addr )
+ return -EINVAL;
+
+ if ( dt_addr != (paddr_t)dt_addr )
+ {
+ printk("Error: Physical address 0x%"PRIx64" for node=%s is greater
than max width (%zu bytes) supported\n",
+ dt_addr, dev->name, sizeof(paddr_t));
+ return -ERANGE;
+ }
+
+ *addr = dt_addr;
+
+ if ( size )
+ {
+ if ( dt_size != (paddr_t)dt_size )
+ {
+ printk("Error: Physical size 0x%"PRIx64" for node=%s is greater
than max width (%zu bytes) supported\n",
+ dt_size, dev->name, sizeof(paddr_t));
+ return -ERANGE;
+ }
+
+ *size = dt_size;
+ }
+
+ return ret;
+}
+
+int dt_for_each_range(const struct dt_device_node *dev,
+ int (*cb)(const struct dt_device_node *dev,
+ uint64_t addr, uint64_t length,
+ void *data),
+ void *data)
+{
+ const struct dt_device_node *parent = NULL;
+ const struct dt_bus *bus, *pbus;
+ const __be32 *ranges;
+ __be32 addr[DT_MAX_ADDR_CELLS];
+ unsigned int rlen;
+ int na, ns, pna, pns, rone;
+
+ bus = dt_match_bus(dev);
+ if ( !bus )
+ return 0; /* device is not a bus */
+
+ parent = dt_get_parent(dev);
+ if ( parent == NULL )
+ return -EINVAL;
+
+ ranges = dt_get_property(dev, "ranges", &rlen);
+ if ( ranges == NULL )
+ {
+ printk(XENLOG_ERR "DT: no ranges; cannot enumerate %s\n",
+ dev->full_name);
+ return -EINVAL;
+ }
+ if ( rlen == 0 ) /* Nothing to do */
+ return 0;
+
+ bus->count_cells(dev, &na, &ns);
+ if ( !DT_CHECK_COUNTS(na, ns) )
+ {
+ printk(XENLOG_ERR "dt_parse: Bad cell count for device %s\n",
+ dev->full_name);
+ return -EINVAL;
+ }
+
+ pbus = dt_match_bus(parent);
+ if ( pbus == NULL )
+ {
+ printk("DT: %s is not a valid bus\n", parent->full_name);
+ return -EINVAL;
+ }
+
+ pbus->count_cells(dev, &pna, &pns);
+ if ( !DT_CHECK_COUNTS(pna, pns) )
+ {
+ printk(XENLOG_ERR "dt_parse: Bad cell count for parent %s\n",
+ dev->full_name);
+ return -EINVAL;
+ }
+
+ /* Now walk through the ranges */
+ rlen /= 4;
+ rone = na + pna + ns;
+
+ dt_dprintk("%s: dev=%s, bus=%s, parent=%s, rlen=%d, rone=%d\n",
+ __func__,
+ dt_node_name(dev), bus->name,
+ dt_node_name(parent), rlen, rone);
+
+ for ( ; rlen >= rone; rlen -= rone, ranges += rone )
+ {
+ uint64_t a, s;
+ int ret;
+
+ memcpy(addr, ranges + na, 4 * pna);
+
+ a = __dt_translate_address(dev, addr, "ranges");
+ s = dt_read_number(ranges + na + pna, ns);
+
+ ret = cb(dev, a, s, data);
+ if ( ret )
+ {
+ dt_dprintk(" -> callback failed=%d\n", ret);
+ return ret;
+ }
+
+ }
+
+ return 0;
+}
+
+/**
+ * dt_find_node_by_phandle - Find a node given a phandle
+ * @handle: phandle of the node to find
+ *
+ * Returns a node pointer.
+ */
+struct dt_device_node *dt_find_node_by_phandle(dt_phandle handle)
+{
+ struct dt_device_node *np;
+
+ dt_for_each_device_node(dt_host, np)
+ if ( np->phandle == handle )
+ break;
+
+ return np;
+}
+
+/**
+ * dt_irq_find_parent - Given a device node, find its interrupt parent node
+ * @child: pointer to device node
+ *
+ * Returns a pointer to the interrupt parent node, or NULL if the interrupt
+ * parent could not be determined.
+ */
+static const struct dt_device_node *
+dt_irq_find_parent(const struct dt_device_node *child)
+{
+ const struct dt_device_node *p;
+ const __be32 *parp;
+
+ do
+ {
+ parp = dt_get_property(child, "interrupt-parent", NULL);
+ if ( parp == NULL )
+ p = dt_get_parent(child);
+ else
+ p = dt_find_node_by_phandle(be32_to_cpup(parp));
+ child = p;
+ } while ( p && dt_get_property(p, "#interrupt-cells", NULL) == NULL );
+
+ return p;
+}
+
+unsigned int dt_number_of_irq(const struct dt_device_node *device)
+{
+ const struct dt_device_node *p;
+ const __be32 *intspec, *tmp;
+ u32 intsize, intlen;
+ int intnum;
+
+ dt_dprintk("dt_irq_number: dev=%s\n", device->full_name);
+
+ /* Try the new-style interrupts-extended first */
+ intnum = dt_count_phandle_with_args(device, "interrupts-extended",
+ "#interrupt-cells");
+ if ( intnum >= 0 )
+ {
+ dt_dprintk(" using 'interrupts-extended' property\n");
+ dt_dprintk(" intnum=%d\n", intnum);
+ return intnum;
+ }
+
+ /* Get the interrupts property */
+ intspec = dt_get_property(device, "interrupts", &intlen);
+ if ( intspec == NULL )
+ return 0;
+ intlen /= sizeof(*intspec);
+
+ dt_dprintk(" using 'interrupts' property\n");
+ dt_dprintk(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
+
+ /* Look for the interrupt parent. */
+ p = dt_irq_find_parent(device);
+ if ( p == NULL )
+ return 0;
+
+ /* Get size of interrupt specifier */
+ tmp = dt_get_property(p, "#interrupt-cells", NULL);
+ if ( tmp == NULL )
+ return 0;
+ intsize = be32_to_cpu(*tmp);
+
+ dt_dprintk(" intsize=%d intlen=%d\n", intsize, intlen);
+
+ return (intlen / intsize);
+}
+
+unsigned int dt_number_of_address(const struct dt_device_node *dev)
+{
+ const __be32 *prop;
+ u32 psize;
+ const struct dt_device_node *parent;
+ const struct dt_bus *bus;
+ int onesize, na, ns;
+
+ /* Get parent & match bus type */
+ parent = dt_get_parent(dev);
+ if ( parent == NULL )
+ return 0;
+
+ bus = dt_match_bus(parent);
+ if ( !bus )
+ return 0;
+ bus->count_cells(dev, &na, &ns);
+
+ if ( !DT_CHECK_COUNTS(na, ns) )
+ return 0;
+
+ /* Get "reg" or "assigned-addresses" property */
+ prop = dt_get_property(dev, bus->addresses, &psize);
+ if ( prop == NULL )
+ return 0;
+
+ psize /= 4;
+ onesize = na + ns;
+
+ return (psize / onesize);
+}
+
+int dt_for_each_irq_map(const struct dt_device_node *dev,
+ int (*cb)(const struct dt_device_node *dev,
+ const struct dt_irq *dt_irq,
+ void *data),
+ void *data)
+{
+ const struct dt_device_node *ipar, *tnode, *old = NULL;
+ const __be32 *tmp, *imap;
+ u32 intsize = 1, addrsize, pintsize = 0, paddrsize = 0;
+ u32 imaplen;
+ int i, ret;
+
+ struct dt_raw_irq dt_raw_irq;
+ struct dt_irq dt_irq;
+
+ dt_dprintk("%s: par=%s cb=%p data=%p\n", __func__,
+ dev->full_name, cb, data);
+
+ ipar = dev;
+
+ /* First get the #interrupt-cells property of the current cursor
+ * that tells us how to interpret the passed-in intspec. If there
+ * is none, we are nice and just walk up the tree
+ */
+ do {
+ tmp = dt_get_property(ipar, "#interrupt-cells", NULL);
+ if ( tmp != NULL )
+ {
+ intsize = be32_to_cpu(*tmp);
+ break;
+ }
+ tnode = ipar;
+ ipar = dt_irq_find_parent(ipar);
+ } while ( ipar );
+ if ( ipar == NULL )
+ {
+ dt_dprintk(" -> no parent found !\n");
+ goto fail;
+ }
+
+ dt_dprintk("%s: ipar=%s, size=%d\n", __func__, ipar->full_name, intsize);
+
+ if ( intsize > DT_MAX_IRQ_SPEC )
+ {
+ dt_dprintk(" -> too many irq specifier cells\n");
+ goto fail;
+ }
+
+ /* Look for this #address-cells. We have to implement the old linux
+ * trick of looking for the parent here as some device-trees rely on it
+ */
+ old = ipar;
+ do {
+ tmp = dt_get_property(old, "#address-cells", NULL);
+ tnode = dt_get_parent(old);
+ old = tnode;
+ } while ( old && tmp == NULL );
+
+ old = NULL;
+ addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
+
+ dt_dprintk(" -> addrsize=%d\n", addrsize);
+
+ /* Now look for an interrupt-map */
+ imap = dt_get_property(dev, "interrupt-map", &imaplen);
+ /* No interrupt-map found. Ignore */
+ if ( imap == NULL )
+ {
+ dt_dprintk(" -> no map, ignoring\n");
+ return 0;
+ }
+ imaplen /= sizeof(u32);
+
+ /* Parse interrupt-map */
+ while ( imaplen > (addrsize + intsize + 1) )
+ {
+ /* skip child unit address and child interrupt specifier */
+ imap += addrsize + intsize;
+ imaplen -= addrsize + intsize;
+
+ /* Get the interrupt parent */
+ ipar = dt_find_node_by_phandle(be32_to_cpup(imap));
+ imap++;
+ --imaplen;
+
+ /* Check if not found */
+ if ( ipar == NULL )
+ {
+ dt_dprintk(" -> imap parent not found !\n");
+ goto fail;
+ }
+
+ dt_dprintk(" -> ipar %s\n", dt_node_name(ipar));
+
+ /* Get #interrupt-cells and #address-cells of new
+ * parent
+ */
+ tmp = dt_get_property(ipar, "#interrupt-cells", NULL);
+ if ( tmp == NULL )
+ {
+ dt_dprintk(" -> parent lacks #interrupt-cells!\n");
+ goto fail;
+ }
+ pintsize = be32_to_cpu(*tmp);
+ tmp = dt_get_property(ipar, "#address-cells", NULL);
+ paddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
+
+ dt_dprintk(" -> pintsize=%d, paddrsize=%d\n",
+ pintsize, paddrsize);
+
+ if ( pintsize > DT_MAX_IRQ_SPEC )
+ {
+ dt_dprintk(" -> too many irq specifier cells in parent\n");
+ goto fail;
+ }
+
+ /* Check for malformed properties */
+ if ( imaplen < (paddrsize + pintsize) )
+ goto fail;
+
+ imap += paddrsize;
+ imaplen -= paddrsize;
+
+ dt_raw_irq.controller = ipar;
+ dt_raw_irq.size = pintsize;
+ for ( i = 0; i < pintsize; i++ )
+ dt_raw_irq.specifier[i] = dt_read_number(imap + i, 1);
+
+ if ( dt_raw_irq.controller != dt_interrupt_controller )
+ {
+ /*
+ * We don't map IRQs connected to secondary IRQ controllers as
+ * these IRQs have no meaning to us until they connect to the
+ * primary controller.
+ *
+ * Secondary IRQ controllers will at some point connect to
+ * the primary controller (possibly via other IRQ controllers).
+ * We map the IRQs at that last connection point.
+ */
+ imap += pintsize;
+ imaplen -= pintsize;
+ dt_dprintk(" -> Skipped IRQ for secondary IRQ controller\n");
+ continue;
+ }
+
+ ret = dt_irq_translate(&dt_raw_irq, &dt_irq);
+ if ( ret )
+ {
+ dt_dprintk(" -> failed to translate IRQ: %d\n", ret);
+ return ret;
+ }
+
+ ret = cb(dev, &dt_irq, data);
+ if ( ret )
+ {
+ dt_dprintk(" -> callback failed=%d\n", ret);
+ return ret;
+ }
+
+ imap += pintsize;
+ imaplen -= pintsize;
+
+ dt_dprintk(" -> imaplen=%d\n", imaplen);
+ }
+
+ return 0;
+
+fail:
+ return -EINVAL;
+}
+
+/**
+ * dt_irq_map_raw - Low level interrupt tree parsing
+ * @parent: the device interrupt parent
+ * @intspec: interrupt specifier ("interrupts" property of the device)
+ * @ointsize: size of the passed in interrupt specifier
+ * @addr: address specifier (start of "reg" property of the device)
+ * @oirq: structure dt_raw_irq filled by this function
+ *
+ * Returns 0 on success and a negative number on error
+ *
+ * This function is a low-level interrupt tree walking function. It
+ * can be used to do a partial walk with synthesized reg and interrupts
+ * properties, for example when resolving PCI interrupts when no device
+ * node exist for the parent.
+ */
+static int dt_irq_map_raw(const struct dt_device_node *parent,
+ const __be32 *intspec, u32 ointsize,
+ const __be32 *addr,
+ struct dt_raw_irq *oirq)
+{
+ const struct dt_device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
+ const __be32 *tmp, *imap, *imask;
+ u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
+ u32 imaplen;
+ int match, i;
+
+ dt_dprintk("dt_irq_map_raw: par=%s,intspec=[0x%08x
0x%08x...],ointsize=%d\n",
+ parent->full_name, be32_to_cpup(intspec),
+ be32_to_cpup(intspec + 1), ointsize);
+
+ ipar = parent;
+
+ /* First get the #interrupt-cells property of the current cursor
+ * that tells us how to interpret the passed-in intspec. If there
+ * is none, we are nice and just walk up the tree
+ */
+ do {
+ tmp = dt_get_property(ipar, "#interrupt-cells", NULL);
+ if ( tmp != NULL )
+ {
+ intsize = be32_to_cpu(*tmp);
+ break;
+ }
+ tnode = ipar;
+ ipar = dt_irq_find_parent(ipar);
+ } while ( ipar );
+ if ( ipar == NULL )
+ {
+ dt_dprintk(" -> no parent found !\n");
+ goto fail;
+ }
+
+ dt_dprintk("dt_irq_map_raw: ipar=%s, size=%d\n", ipar->full_name, intsize);
+
+ if ( ointsize != intsize )
+ return -EINVAL;
+
+ /* Look for this #address-cells. We have to implement the old linux
+ * trick of looking for the parent here as some device-trees rely on it
+ */
+ old = ipar;
+ do {
+ tmp = dt_get_property(old, "#address-cells", NULL);
+ tnode = dt_get_parent(old);
+ old = tnode;
+ } while ( old && tmp == NULL );
+
+ old = NULL;
+ addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
+
+ dt_dprintk(" -> addrsize=%d\n", addrsize);
+
+ /* Now start the actual "proper" walk of the interrupt tree */
+ while ( ipar != NULL )
+ {
+ /* Now check if cursor is an interrupt-controller and if it is
+ * then we are done
+ */
+ if ( dt_get_property(ipar, "interrupt-controller", NULL) != NULL )
+ {
+ dt_dprintk(" -> got it !\n");
+ if ( intsize > DT_MAX_IRQ_SPEC )
+ {
+ dt_dprintk(" -> intsize(%u) greater than
DT_MAX_IRQ_SPEC(%u)\n",
+ intsize, DT_MAX_IRQ_SPEC);
+ goto fail;
+ }
+ for ( i = 0; i < intsize; i++ )
+ oirq->specifier[i] = dt_read_number(intspec + i, 1);
+ oirq->size = intsize;
+ oirq->controller = ipar;
+ return 0;
+ }
+
+ /* Now look for an interrupt-map */
+ imap = dt_get_property(ipar, "interrupt-map", &imaplen);
+ /* No interrupt map, check for an interrupt parent */
+ if ( imap == NULL )
+ {
+ dt_dprintk(" -> no map, getting parent\n");
+ newpar = dt_irq_find_parent(ipar);
+ goto skiplevel;
+ }
+ imaplen /= sizeof(u32);
+
+ /* Look for a mask */
+ imask = dt_get_property(ipar, "interrupt-map-mask", NULL);
+
+ /* If we were passed no "reg" property and we attempt to parse
+ * an interrupt-map, then #address-cells must be 0.
+ * Fail if it's not.
+ */
+ if ( addr == NULL && addrsize != 0 )
+ {
+ dt_dprintk(" -> no reg passed in when needed !\n");
+ goto fail;
+ }
+
+ /* Parse interrupt-map */
+ match = 0;
+ while ( imaplen > (addrsize + intsize + 1) && !match )
+ {
+ /* Compare specifiers */
+ match = 1;
+ for ( i = 0; i < addrsize && match; ++i )
+ {
+ __be32 mask = imask ? imask[i] : cpu_to_be32(0xffffffffu);
+ match = ((addr[i] ^ imap[i]) & mask) == 0;
+ }
+ for ( ; i < (addrsize + intsize) && match; ++i )
+ {
+ __be32 mask = imask ? imask[i] : cpu_to_be32(0xffffffffu);
+ match = ((intspec[i-addrsize] ^ imap[i]) & mask) == 0;
+ }
+ imap += addrsize + intsize;
+ imaplen -= addrsize + intsize;
+
+ dt_dprintk(" -> match=%d (imaplen=%d)\n", match, imaplen);
+
+ /* Get the interrupt parent */
+ newpar = dt_find_node_by_phandle(be32_to_cpup(imap));
+ imap++;
+ --imaplen;
+
+ /* Check if not found */
+ if ( newpar == NULL )
+ {
+ dt_dprintk(" -> imap parent not found !\n");
+ goto fail;
+ }
+
+ /* Get #interrupt-cells and #address-cells of new
+ * parent
+ */
+ tmp = dt_get_property(newpar, "#interrupt-cells", NULL);
+ if ( tmp == NULL )
+ {
+ dt_dprintk(" -> parent lacks #interrupt-cells!\n");
+ goto fail;
+ }
+ newintsize = be32_to_cpu(*tmp);
+ tmp = dt_get_property(newpar, "#address-cells", NULL);
+ newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
+
+ dt_dprintk(" -> newintsize=%d, newaddrsize=%d\n",
+ newintsize, newaddrsize);
+
+ /* Check for malformed properties */
+ if ( imaplen < (newaddrsize + newintsize) )
+ goto fail;
+
+ imap += newaddrsize + newintsize;
+ imaplen -= newaddrsize + newintsize;
+
+ dt_dprintk(" -> imaplen=%d\n", imaplen);
+ }
+ if ( !match )
+ goto fail;
+
+ old = newpar;
+ addrsize = newaddrsize;
+ intsize = newintsize;
+ intspec = imap - intsize;
+ addr = intspec - addrsize;
+
+ skiplevel:
+ /* Iterate again with new parent */
+ dt_dprintk(" -> new parent: %s\n", dt_node_full_name(newpar));
+ ipar = newpar;
+ newpar = NULL;
+ }
+fail:
+ return -EINVAL;
+}
+
+int dt_device_get_raw_irq(const struct dt_device_node *device,
+ unsigned int index,
+ struct dt_raw_irq *out_irq)
+{
+ const struct dt_device_node *p;
+ const __be32 *intspec, *tmp, *addr;
+ u32 intsize, intlen;
+ int res = -EINVAL;
+ struct dt_phandle_args args;
+ int i;
+
+ dt_dprintk("dt_device_get_raw_irq: dev=%s, index=%u\n",
+ device->full_name, index);
+
+ /* Get the reg property (if any) */
+ addr = dt_get_property(device, "reg", NULL);
+
+ /* Try the new-style interrupts-extended first */
+ res = dt_parse_phandle_with_args(device, "interrupts-extended",
+ "#interrupt-cells", index, &args);
+ if ( !res )
+ {
+ dt_dprintk(" using 'interrupts-extended' property\n");
+ dt_dprintk(" intspec=%d intsize=%d\n", args.args[0], args.args_count);
+
+ for ( i = 0; i < args.args_count; i++ )
+ args.args[i] = cpu_to_be32(args.args[i]);
+
+ return dt_irq_map_raw(args.np, args.args, args.args_count,
+ addr, out_irq);
+ }
+
+ /* Get the interrupts property */
+ intspec = dt_get_property(device, "interrupts", &intlen);
+ if ( intspec == NULL )
+ return -EINVAL;
+ intlen /= sizeof(*intspec);
+
+ dt_dprintk(" using 'interrupts' property\n");
+ dt_dprintk(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
+
+ /* Look for the interrupt parent. */
+ p = dt_irq_find_parent(device);
+ if ( p == NULL )
+ return -EINVAL;
+
+ /* Get size of interrupt specifier */
+ tmp = dt_get_property(p, "#interrupt-cells", NULL);
+ if ( tmp == NULL )
+ goto out;
+ intsize = be32_to_cpu(*tmp);
+
+ dt_dprintk(" intsize=%d intlen=%d\n", intsize, intlen);
+
+ /* Check index */
+ if ( (index + 1) * intsize > intlen )
+ goto out;
+
+ /* Get new specifier and map it */
+ res = dt_irq_map_raw(p, intspec + index * intsize, intsize,
+ addr, out_irq);
+ if ( res )
+ goto out;
+out:
+ return res;
+}
+
+int dt_irq_translate(const struct dt_raw_irq *raw,
+ struct dt_irq *out_irq)
+{
+ ASSERT(dt_irq_xlate != NULL);
+ ASSERT(dt_interrupt_controller != NULL);
+
+ /*
+ * TODO: Retrieve the right irq_xlate. This is only works for the primary
+ * interrupt controller.
+ */
+ if ( raw->controller != dt_interrupt_controller )
+ return -EINVAL;
+
+ return dt_irq_xlate(raw->specifier, raw->size,
+ &out_irq->irq, &out_irq->type);
+}
+
+int dt_device_get_irq(const struct dt_device_node *device, unsigned int index,
+ struct dt_irq *out_irq)
+{
+ struct dt_raw_irq raw;
+ int res;
+
+ res = dt_device_get_raw_irq(device, index, &raw);
+
+ if ( res )
+ return res;
+
+ return dt_irq_translate(&raw, out_irq);
+}
+
+bool dt_device_is_available(const struct dt_device_node *device)
+{
+ const char *status;
+ u32 statlen;
+
+ status = dt_get_property(device, "status", &statlen);
+ if ( status == NULL )
+ return 1;
+
+ if ( statlen > 0 )
+ {
+ if ( !strcmp(status, "okay") || !strcmp(status, "ok") )
+ return 1;
+ }
+
+ return 0;
+}
+
+bool dt_device_for_passthrough(const struct dt_device_node *device)
+{
+ return (dt_find_property(device, "xen,passthrough", NULL) != NULL);
+
+}
+
+static int __dt_parse_phandle_with_args(const struct dt_device_node *np,
+ const char *list_name,
+ const char *cells_name,
+ int cell_count, int index,
+ struct dt_phandle_args *out_args)
+{
+ const __be32 *list, *list_end;
+ int rc = 0, cur_index = 0;
+ u32 size, count = 0;
+ struct dt_device_node *node = NULL;
+ dt_phandle phandle;
+
+ /* Retrieve the phandle list property */
+ list = dt_get_property(np, list_name, &size);
+ if ( !list )
+ return -ENOENT;
+ list_end = list + size / sizeof(*list);
+
+ /* Loop over the phandles until all the requested entry is found */
+ while ( list < list_end )
+ {
+ rc = -EINVAL;
+ count = 0;
+
+ /*
+ * If phandle is 0, then it is an empty entry with no
+ * arguments. Skip forward to the next entry.
+ * */
+ phandle = be32_to_cpup(list++);
+ if ( phandle )
+ {
+ /*
+ * Find the provider node and parse the #*-cells
+ * property to determine the argument length.
+ *
+ * This is not needed if the cell count is hard-coded
+ * (i.e. cells_name not set, but cell_count is set),
+ * except when we're going to return the found node
+ * below.
+ */
+ if ( cells_name || cur_index == index )
+ {
+ node = dt_find_node_by_phandle(phandle);
+ if ( !node )
+ {
+ printk(XENLOG_ERR "%s: could not find phandle\n",
+ np->full_name);
+ goto err;
+ }
+ }
+
+ if ( cells_name )
+ {
+ if ( !dt_property_read_u32(node, cells_name, &count) )
+ {
+ printk("%s: could not get %s for %s\n",
+ np->full_name, cells_name, node->full_name);
+ goto err;
+ }
+ }
+ else
+ count = cell_count;
+
+ /*
+ * Make sure that the arguments actually fit in the
+ * remaining property data length
+ */
+ if ( list + count > list_end )
+ {
+ printk(XENLOG_ERR "%s: arguments longer than property\n",
+ np->full_name);
+ goto err;
+ }
+ }
+
+ /*
+ * All of the error cases above bail out of the loop, so at
|
![]() |
Lists.xenproject.org is hosted with RackSpace, monitoring our |