PROPOSAL: Unicore

Roles

Project Leads: Simon Kuenzer <simon.kuenzer@neclab.eu>
(co-lead) Felipe Huici <felipe.huici@neclab.eu>
(co-lead) Florian Schmidt <florian.schmidt@neclab.eu>

Project Mentor: Lars Kurth <lars.kurth@citrix.com>

Project Sponsors: Stefano Stabellini <sstabellini@kernel.org>
Wei Liu <wei.liu2@citrix.com>

Background

In recent years, several papers and projects dedicated to
unikernels

have shown the immense potential for performance gains that these
have. By leveraging specialization and the use of minimalistic
OSes,

unikernels are able to yield impressive numbers, including fast
instantiation times (tens of milliseconds or less), tiny memory
footprints (a few MBs or even KBs), high network throughput (10-40
Gb/s), and high consolidation (e.g., being able to run thousands
of

instances on a single commodity server), not to mention a reduced
attack surface and the potential for easier certification.
Unikernel

projects worthy of mention include MirageOS, ClickOS, Erlang on
Xen,

OSv, HALVM, and Minicache, Rump, among others.

The fundamental drawback of unikernels is that they require that
applications be manually ported to the underlying minimalistic OS
(e.g. having to port nginx, snort, mysgl or memcached to MiniOS or
OSv); this requires both expert work and often considerable amount
of time. In essence, we need to pick between either high
performance

with unikernels, or no porting effort but decreased performance
and decreased efficiency with standard OS/VM images.

The goal of this proposal is to change this status gquo by
providing

a highly configurable unikernel code base; we call this base

Unicore.

This project also aims to concentrate the various efforts

currently going on in the Xen community regarding minimalistic



OSes (essentially different variants of MiniOS). We think that
splitting the community across these variants is
counter-productive and hope that Unicore will provide a common
place for all or most improvements and customizations of
minimalistic OSes. The long term goal is to replace something like
MiniOS with a tool that can automatically build such a
minimalistic OS.

Unicore - The "Unikernel Core"

The high level goal of Unicore is to be able to build unikernels
targeted at specific applications without requiring the
time-consuming, expert work that building such a unikernel
requires today. An additional goal (or hope) of Unicore is that
all developers interested in unikernel development would
contribute by supplying libraries rather than working on
independent projects with different code bases as it is done now.
The main idea behind Unicore is depicted in Figure 1 and consists
of two basic components:

',_
o
L % mysql QEMU mailiman
L
W
@ nginx ENOET memeached myapp
CUSTOM
_network stack

libe.o
libnawlibe. o

liblwip.o libecoop.o

libtepip.o

libvis.o

linrar.o libpreampt. o

1ikhtetp. o libext3.o librt.o lihopenssl .o

Fressssenenssny

libconsola.o H libbuddy.o : libocaml.o : libgdb.o
libixgba.o libheap.o libpythen.o libucdabug.o
libnetfront.o libmaspoal . & liberiang.s B - libperf.o
LTS

¢ platform lib
pool bareplat.o liblinuxuplat.o libxenplat.o

(2) SELECT&CONFIG UBS

libarm32arch.o

unicore ba :a_a_ﬂ_hlJ_'} n__inn_uul'_'l 2 e u_j:!m_lsl.li_il;:_' 4

unikernel
binaries

u:l:i.c-:-ro_]:-arn_ﬂ]’.l“ wnicore xen MIFES un.‘ln-:rn_]‘.'.'m_HI?E

@RUN @BUILD

Figure 1. Unicore Architecture.



Library pools would contain libraries that the user of Unicore
can select from to create the unikernel. From the bottom up,
library pools are organized into (1) the architecture library
tool, containing libraries specific to a computer architecture
(e.g., x86 64, ARM32 or MIPS); (2) the platform tool, where
target platforms can be Xen, KVM, bare metal (i.e. no
virtualization) and user-space Linux; and (3) the main library
pool, containing a rich set of functionality to build the
unikernel from. This last library includes drivers (both virtual
such as netback/netfront and physical such as ixgbe),
filesystems, memory allocators, schedulers, network stacks,
standard libs (e.g. libc, openssl, etc.), runtimes (e.g. a
Python interpreter and debugging and profiling tools. These
pools of libraries constitute a code base for creating
unikernels. As shown, a library can be relatively large (e.g
libc) or quite small (a scheduler), which should allow for a
fair amount of customization for the unikernel.

The Unicore build tool is in charge of compiling the application
and the selected libraries together to create a binary for a
specific platform and architecture (e.g., Xen on x86 64). The
tool is currently inspired by Linux’s kconfig system and
consists of a set of Makefiles. It allows users to select
libraries, to configure them, and to warn them when library
dependencies are not met. In addition, the tool can also
simultaneously generate binaries for multiple platforms.

As an example, imagine a user wanting to generate a network driver
domain unikernel. In this case, we would assume the “application”
to be the netback driver. To select this application, the user
would first run “make menuconfig” from within the netback
application folder. The Makefile there would set a variable to
indicate what the application is, and would include the main
Unicore Makefiles so that the unikernel can be built (Step 1 in
the figure). Using the menu-based system, the user chooses the
relevant libraries; for a Xen driver domain this would include a
physical network driver, the netback driver, the libxenplat
library and a library from the architecture library pool such as
1libx86 64arch (Step 2 in the figure). With this in place, the user
saves the configuration and types “make” to build the unikernel
(Step 3) and “x1 create” to run it (Step 4).

A note on the ABI/API exposed to the application: because Unicore
allows for customization of the unikernels, the ABI (or API since
there is no kernel) would be custom, that is, defined by the
libraries the user selected. Having said that, it would be



perfectly possible, for instance, to build POSIX-compliant
unikernels with it (e.g. similar to Rump, but in principle with
much more specialized OS layers).

Finally, it is worth pointing out that we use the term application
loosely: another clear target for Unicore is the building of
runtime-specific unikernels (e.g. a unikernel able to run Python
or OCaml scripts as is the case with MirageOS).

Relevance to Xen and its Community

Unikernels are important to a number of areas relevant to the Xen
community, including IoT, automotive, stub domains, and driver
domain/dom0 disaggregation. Unicore could help boost the progress
in all of these areas by quickly providing the necessary tools to
create unikernels for them. For instance, for a driver domain,
the user would include the “library” containing the relevant
hardware driver and corresponding back-end driver, and in
principle Unicore would take care of the rest.

In addition, Unicore could eventually replace Mini-0S, providing a
cleaner, more stable and flexible base from which to build
unikernels for projects (the modularization of Mini-0S is in fact
already taking place).

Current Status

Unicore is at an early stage. For now it includes some base
libraries with code extracted from Mini-O0S as well as a build tool
inspired by Linux's KConfig system. Unicore is currently able to
build "hello world" unikernels for Xen and Linux user space on

x86 64 and ARMv7.

Incubation

The reason behind making Unicore a Xen sub-project project is to
(1)

bring the existence of Unicore to the attention of the Xen
community

and to outside world; (2) to attempt to harness interest and
potentially development cycles from people and companies
interested in unikernels; (3) to concentrate maintenance resources
from people interested in unikernels within the community; and (4)
to have a legal entity behind the project.



License

The main license of the run-time components of Unicore will be a
3-clause BSD license, unless there is a good reason not to use it
(e.g. we may import 2-clause BSD licensed code from Mini-0S, which
we would *not* anticipate to change). The Makefile system would be
licensed under GPL v2 or later as we want to be able to use
KConfig functionality from Buildroot/Linux.

Required Infrastructure

The official repositories should be created on
[http://xenbits.xenproject.org/] under ‘unicore.git’ . There should
be a main repository for the core unicore implementation and
additional repositories for some more advanced extension libraries

(e.g., 1lwIP, newlib).

### Main repository

‘unicore.git’

### Repositories for extension libraries

Repositories for additional libraries that are supported by the
Unicore

project should exist under a separate directory:
‘unicore-libs/’

For example:

‘unicore-libs/lwip.git"
‘unicore-libs/newlib.git’

### Mailing list

In the beginning we would use the MiniOS mailing list
(minios-devel@lists.xenproject.org). When we get traction with
Unicore we could consider splitting that traffic onto a unicore
mailing list.



