
Xen Management API Draft API Revision 0.4.3 (Draft for discussion)

Xen Management API Draft

Version: API Revision 0.4.3 (Draft for discussion)

Date: 25th August 2006
Open Preview Release

Comments are welcome!

Ewan Mellor: ewan@xensource.com

Richard Sharp: richard.sharp@xensource.com

David Scott: david.scott@xensource.com

Jon Harrop: jon.harrop@xensource.com

Copyright c© 2006 XenSource, Inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts and no Back-Cover Texts. A copy
of the license is included in the section entitled ”GNU Free Documentation License”.



Chapter 1

Introduction

This document contains a proposal for a Xen Management API—an interface for remotely config-
uring and controlling virtualised guests running on a Xen-enabled host.

This document is an early draft for discussion purposes only.

The API is presented here as a set of Remote Procedure Calls, with a wire format based upon
XML-RPC. No specific language bindings are prescribed, although examples will be given in the
python programming language.
Although we adopt some terminology from object-oriented programming, future client language
bindings may or may not be object oriented. The API reference uses the terminology classes and
objects . For our purposes a class is simply a hierarchical namespace; an object is an instance of
a class with its fields set to specific values. Objects are persistent and exist on the server-side.
Clients may obtain opaque references to these server-side objects and then access their fields via
get/set RPCs.
For each class we specify a list of fields along with their types and qualifiers . A qualifier is one of:

• ROrun : the field is Read Only. Furthermore, its value is automatically computed at runtime.
For example: current CPU load and disk IO throughput.

• ROins : the field must be manually set when a new object is created, but is then Read Only
for the duration of the object’s life. For example, the maximum memory addressable by a
guest is set before the guest boots.

• RW : the field is Read/Write. For example, the name of a VM.

A full list of types is given in Chapter 2. However, there are three types that require explicit
mention:

• t Ref : signifies a reference to an object of type t.

• t Set : signifies a set containing values of type t.

• (t1, t2) Map: signifies a mapping from values of type t1 to values of type t2.

Note that there are a number of cases where Refs are doubly linked—e.g. a VM has a field called
groups of type (VMGroup Ref ) Set ; this field lists the VMGroups that a particular VM is part
of. Similarly, the VMGroups class has a field called VMs of type (VM Ref) Set that contains the
VMs that are part of a particular VMGroup. These two fields are bound together , in the sense
that adding a new VMGroup to a VM causes the VMs field of the corresponding VMGroup object
to be updated automatically.
The API reference explicitly lists the fields that are bound together in this way. It also contains a
diagram that shows relationships between classes. In this diagram an edge signifies the existance
of a pair of fields that are bound together, using standard crows-foot notation to signify the type
of relationship (e.g. one-many, many-many).

2



1.1 RPCs associated with fields

Each field, f, has an RPC accessor associated with it that returns f’s value:

• “get f(Ref x)”: takes a Ref that refers to an object and returns the value of f.

Each field, f, with attribute RW and whose outermost type is Set has the following additional
RPCs associated with it:

• an “add to f(Ref x, v)” RPC adds a new element v to the set1;

• a “remove from f(Ref x, v)” RPC removes element v from the set;

Each field, f, with attribute RW and whose outermost type is Map has the following additional
RPCs associated with it:

• an “add to f(Ref x, k, v)” RPC adds new pair (k, v) to the mapping stored in f in
object x. Adding a new pair for duplicate key, k, overwrites any previous mapping for k.

• a “remove from f(Ref x, k)” RPC removes the pair with key k from the mapping stored
in f in object x.

Each field whose outermost type is neither Set nor Map, but whose attribute is RW has an RPC
acessor associated with it that sets its value:

• For RW (Read/W rite), a “set f(Ref x, v)” RPC function is also provided. This sets field
f on object x to value v.

1.2 RPCs associated with classes

• Each class has a constructor RPC named “create” that takes as parameters all fields marked
RW and RO ins . The result of this RPC is that a new persistent object is created on the
server-side with the specified field values.

• Each class has a get by uuid(uuid) RPC that returns the object of that class that has the
specified uuid.

• Each class that has a short name field has a “get by short name(name)” RPC that returns
a set of objects of that class that have the specified name.

• Each class has a “to XML()” RPC that serialises the state of all fields as an XML string.

• Each class has a “destroy(Ref x)” RPC that explicitly deletes the persistent object spec-
ified by x from the system. This is a non-cascading delete – if the object being removed is
referenced by another object then the destroy call will fail.

1.2.1 Additional RPCs

As well as the RPCs enumerated above, some classes have additional RPCs associated with them.
For example, the VM class have RPCs for cloning, suspending, starting etc. Such additional RPCs
are described explicitly in the API reference.

1Since sets cannot contain duplicate values this operation has no action in the case that v was already in the

set.

3



1.3 Wire Protocol for Remote API Calls

API calls are sent over a network to a Xen-enabled host using the XML-RPC protocol. In this
Section we describe how the higher-level types used in our API Reference are mapped to primitive
XML-RPC types.
In our API Reference we specify the signatures of API functions in the following style:

(ref_vm Set) Host.ListAllVMs()

This specifies that the function with name Host.ListAllVMs takes no parameters and returns a
Set of ref vms. These types are mapped onto XML-RPC types in a straight-forward manner:

• Floats, Bools, DateTimes and Strings map directly to the XML-RPC double, boolean,
dateTime.iso8601, and string elements.

• all our “ref ” types (e.g. ref vm in the above example) map to XML-RPC’s String type.
The string itself is the OSF DCE UUID presentation format (as output by uuidgen, etc).

• ints are all assumed to be 64-bit in our API and are encoded as a string of decimal digits
(rather than using XML-RPC’s built-in 32-bit i4 type).

• values of enum types are encoded as strings. For example, a value of destroy of type
on normal exit, would be conveyed as:

<value><string>destroy</string></value>

• for all our types, t, our type t Set simply maps to XML-RPC’s Array type, so for example
a value of type cpu feature Set would be transmitted like this:

<array>

<data>

<value><string>CX8</string></value>

<value><string>PSE36</string></value>

<value><string>FPU</string></value>

</data>

</array>

• for types k and v, our type (k, v) Map maps onto an XML-RPC struct, with the key as
the name of the struct. Note that the (k, v) Map type is only valid when k is a String,
Ref, or Int, and in each case the keys of the maps are stringified as above. For example,
the (String, double) Map containing a the mappings Mike → 2.3 and John → 1.2 would
be represented as:

<value>

<struct>

<member>

<name>Mike</name>

<value><double>2.3</double></value>

</member>

<member>

<name>John</name>

<value><double>1.2</double></value>

</member>

</struct>

</value>

4



• our Void type is transmitted as an empty string.

1.3.1 Return Values/Status Codes

The return value of an RPC call is an XML-RPC Struct.

• The first element of the struct is named Status; it contains a string value indicating whether
the result of the call was a “Success” or a “Failure”.

If Status was set to Success then the Struct contains a second element named Value:

• The element of the struct named Value contains the function’s return value.

In the case where Status is set to Failure then the struct contains a second element named
ErrorDescription:

• The element of the struct named ErrorDescription contains an array of string values. The
first element of the array represents an error code; the remainder of the array represents
error parameters relating to that code.

For example, an XML-RPC return value from the Host.ListAllVMs function above may look like
this:

<struct>

<member>

<name>Status</name>

<value>Success</value>

</member>

<member>

<name>Value</name>

<value>

<array>

<data>

<value>vm-id-1</value>

<value>vm-id-2</value>

<value>vm-id-3</value>

</data>

</array>

</value>

</member>

</struct>

1.4 Making XML-RPC Calls

1.4.1 Transport Layer

We ought to support at least

• HTTP/S for remote administration

• HTTP over Unix domain sockets for local administration

1.4.2 Session Layer

The XML-RPC interface is session-based; before you can make arbitrary RPC calls you must login
and initiate a session. For example:

session_id Session.login_with_password(string uname, string pwd)

5



Where uname and password refer to your username and password respectively, as defined by the
Xen administrator. The session id returned by Session.Login is passed to subequent RPC
calls as an authentication token.
A session can be terminated with the Session.Logout function:

void Session.Logout(session_id session)

1.4.3 Synchronous and Asynchronous invocation

Each method call (apart from those on “Session” and “Task” objects) can be made either syn-
chronously or asynchronously. A synchronous RPC call blocks until the return value is received;
the return value of a synchronous RPC call is exactly as specified in Section 1.3.1.
Each of the methods specified in the API Reference is synchronous. However, although not
listed explicitly in this document, each method call has an asynchronous analogue in the Async

namespace. For example, synchronous call VM.Install(...) (described in Chapter 2) has an
asynchronous counterpart, Async.VM.Install(...), that is non-blocking.
Instead of returning its result directly, an asynchronous RPC call returns a task-id; this identifier
is subsequently used to track the status of a running asynchronous RPC. Note that an asychronous
call may fail immediately, before a task-id has even been created—to represent this eventuality,
the returned task-id is wrapped in an XML-RPC struct with a Status, ErrorDescription and
Value fields, exactly as specified in Section 1.3.1.
The task-id is provided in the Value field if Status is set to Success.
Two special RPC calls are provided to poll the status of asynchronous calls:

Array<task_id> Async.Task.GetAllTasks (session_id s)

task_status Async.Task.GetStatus (session_id s, task_id t)

Async.Task.GetAllTasks returns a set of the currently executing asynchronous tasks belong to
the current user2.
Async.Task.GetStatus returns a task status result. This is an XML-RPC struct with three
elements:

• The first element is named Progress and contains an Integer between 0 and 100 represent-
ing the estimated percentage of the task currently completed.

• The second element is named ETA and contains a DateTime representing the estimated time
the task will be complete.

• The third element is named Result. If Progress is not 100 then Result contains the empty
string. If Progress is set to 100, then Result contains the function’s return result (as
specified in Section 1.3.1)3.

1.5 Example interactive session

This section describes how an interactive session might look, using the python XML-RPC client
library.
First, initialise python and import the library xmlrpclib:

\$ python2.4

...

>>> import xmlrpclib

Create a python object referencing the remote server:

2The current user is determined by the username that was provided to Session.Login.
3Recall that this itself is a struct potentially containing status, errorcode, value fields etc.

6



>>> xen = xmlrpclib.Server("http://test:4464")

Acquire a session token by logging in with a username and password (error-handling ommitted for
brevity; the session token is pointed to by the key ’Value’ in the returned dictionary)

>>> session = xen.Session.do_login_with_password("user", "passwd")[’Value’]

When serialised, this call looks like the following:

<?xml version=’1.0’?>

<methodCall>

<methodName>Session.do_login_with_password</methodName>

<params>

<param>

<value><string>user</string></value>

</param>

<param>

<value><string>passwd</string></value>

</param>

</params>

</methodCall>

Next, the user may acquire a list of all the VMs known to the host: (Note the call takes the session
token as the only parameter)

>>> all_vms = xen.VM.do_list(session)[’Value’]

>>> all_vms

[’b7b92d9e-d442-4710-92a5-ab039fd7d89b’, ’23e1e837-abbf-4675-b077-d4007989b0cc’, ’2045dbc0-0734-4eea-

Note the VM references are internally UUIDs. Once a reference to a VM has been acquired a
lifecycle operation may be invoked:

>>> xen.VM.do_start(session, all_vms[3], False)

{’Status’: ’Failure’, ’ErrorDescription’: ’Operation not implemented’}

In this case the start message has not been implemented and an error response has been returned.
Currently these high-level errors are returned as structured data (rather than as XMLRPC faults),
allowing for internationalised errors in future. Finally, here are some examples of using accessors
for object fields:

>>> xen.VM.getname_label(session, all_vms[3])[’Value’]

’SMP’

>>> xen.VM.getname_description(session, all_vms[3])[’Value’]

’Debian for Xen’

7



powered down

paused

start(paused=true)

running

start(paused=false)

resume

suspended

suspend

cleanShutdown /
hardShutdown

pause

suspend

resume(paused=true)

resume(paused=false)

Figure 1.1: VM Lifecycle

1.6 VM Lifecycle

Figure 1.1 shows the states that a VM can be in and the API calls that can be used to move the
VM between these states.

8



1.7 To-Do

Lots and lots! Including:

1.7.1 Clarity

• Roll constructors and get by uuid etc (section 1.2) into section 2 so that it is clearer that
each class has these.

• Emphasise that enums are strings on the wire, and so are not restricted to a certain number
of bits.

• Clarify return values, in particular that void means return a status code, potential error
description, but otherwise no value.

• Talk about UUID generation.

• Clarify session behaviour wrt timeouts and disconnects.

• Clarify behaviour of progress field on asyncrhonous request polling when that request fails.

1.7.2 Content

Model

• Improve the set of available power states and corresponding lifecycle semantics. Rename
power state, maybe.

• Specify the CPU scheduler configuration properly, inc CPU affinity, weights, etc.

• Add Vm.architecture and Host.compatible architecture fields.

• Add migration calls, including the ability to test whether a migration will succeed, and
authentication token exchange.

• Improve asynchronous task handling, with a registration call, a “blocking poll” call, and an
explicit notification destination. Registration for “power state” is useful.

• Specify that session keys outlive the HTTP session, and add a timeout for them (configurable
in the tools).

• Add places for people to store extra data (“otherConfig” perhaps)

• Specify how hardware UUIDs are used / accessed.

• Marking VDIs as exclusive / shareable (locking?)

• Consider how to represent CDROMs (as VDIs?)

• Define lists of exceptions which may be thrown by each RPC, including error codes and
parameters.

• Host characteristics: minimum amount of memory, TPM, network bandwidth, amount of
host memory, amount consumed by VMs, max amount available for new VMs?

• Cooked resource monitoring interface.

• Network needs additional attributes that provide media characteristics of the NIC:

– RO bandwidth integer Bandwidth in mbps

– RO latency integer time in ms for an icmp roundtrip to a host on the same subnet.

9



• TPM

– Would it not be better to have a class TPM and a member TPMs ((TPM ref) Set)
containing an array of zero or one references to TPMs? I assume that an empty array
would make it clear that no TPM is associated with the VM instead of encoding its ex-
istence into TPM/instance or TPM/backend somehow. The current members instance
and backend could then be moved into the TPM class.

– Also a Xen system can be running an access control policy where each VM’s run-
time access to resources is restricted by the label it has been given compared to
those of the resources. Currently a VM’s configuration file may contain a line like
access control[policy=’<name of the system’s policy>’,label=’<label given to VM>’].
I think the identifiers ’policy’ and ’label’ should also be part of the VM class either
directly in the form ’access control/policy’ or indirectly in an access control class.

• Mike Day’s Vm.profile field?

• Clone customisation?

• NIC teaming? The NIC field of the Network class should be a list (Set) so that we can
signify NIC teaming. (Combining physical NICs in a single host interface to achieve greater
bandwidth).

Transport

• Allow non-HTTP transports. Explicitly allow stdio transport, for SSH.

Authentication

• Delegation to the transport layer.

• Extend PAM exchange across the wire.

• Fine-grained access control.

10



Chapter 2

API Reference

2.1 Classes

The following classes are defined:

Name Description
session A session
task A longrunning asynchronous task
VM A virtual machine (or ’guest’)
host A physical host
host cpu A physical CPU
network A virtual network
VIF A virtual network interface
SR A storage repository
VDI A virtual disk image
VBD A virtual block device
user A user of the system
debug A basic class for testing

2.2 Relationships Between Classes

Fields that are bound together are shown in the following table:

object.field object.field relationship
VDI.VBDs VBD.VDI many-to-one
VDI.parent VDI.children one-to-many
VBD.VM VM.VBDs one-to-many
VIF.VM VM.VIFs one-to-many
VIF.network network.VIFs one-to-many
SR.VDIs VDI.SR many-to-one
host.resident VMs VM.resident on many-to-one
host.host CPUs host cpu.host many-to-one

The following represents bound fields (as specified above) diagramatically, using crows-foot nota-
tion to specify one-to-one, one-to-many or many-to-many relationships:

11



session

host

this_host(1)

user

this_user(1)

task

VMhost_cpu network

VIF

SR

VDI

VBD

debug

2.2.1 List of bound fields

2.3 Types

2.3.1 Primitives

The following primitive types are used to specify methods and fields in the API Reference:

Type Description
String text strings
Int 64-bit integers
Float IEEE double-precision floating-point numbers
Bool boolean
DateTime date and timestamp
Ref (object name) reference to an object of class name

2.3.2 Higher order types

The following type constructors are used:

Type Description
List (t) an arbitrary-length list of elements of type t
Map (a → b) a table mapping values of type a to values of type b

2.3.3 Enumeration types

The following enumeration types are used:

enum vdi type

system a disk that may be replaced on upgrade
user a disk that is always preserved on upgrade
ephemeral a disk that may be reformatted on upgrade

12



enum vm power state

Halted Halted
Paused Paused
Running Running
Suspended Suspended
ShuttingDown Shutting Down
Unknown Some other unknown state

enum cpu feature

FPU Onboard FPU
VME Virtual Mode Extensions
DE Debugging Extensions
PSE Page Size Extensions
TSC Time Stamp Counter
MSR Model-Specific Registers, RDMSR, WRMSR
PAE Physical Address Extensions
MCE Machine Check Architecture
CX8 CMPXCHG8 instruction
APIC Onboard APIC
SEP SYSENTER/SYSEXIT
MTRR Memory Type Range Registers
PGE Page Global Enable
MCA Machine Check Architecture
CMOV CMOV instruction (FCMOVCC and FCOMI too if FPU present)
PAT Page Attribute Table
PSE36 36-bit PSEs
PN Processor serial number
CLFLSH Supports the CLFLUSH instruction
DTES Debug Trace Store
ACPI ACPI via MSR
MMX Multimedia Extensions
FXSR FXSAVE and FXRSTOR instructions (fast save and restore
XMM Streaming SIMD Extensions
XMM2 Streaming SIMD Extensions-2
SELFSNOOP CPU self snoop
HT Hyper-Threading
ACC Automatic clock control
IA64 IA-64 processor
SYSCALL SYSCALL/SYSRET
MP MP Capable.
NX Execute Disable
MMXEXT AMD MMX extensions
LM Long Mode (x86-64)
3DNOWEXT AMD 3DNow! extensions
3DNOW 3DNow!
RECOVERY CPU in recovery mode
LONGRUN Longrun power control
LRTI LongRun table interface
CXMMX Cyrix MMX extensions
K6 MTRR AMD K6 nonstandard MTRRs
CYRIX ARR Cyrix ARRs (= MTRRs)

13



CENTAUR MCR Centaur MCRs (= MTRRs)
K8 Opteron, Athlon64
K7 Athlon
P3 P3
P4 P4
CONSTANT TSC TSC ticks at a constant rate
FXSAVE LEAK FXSAVE leaks FOP/FIP/FOP
XMM3 Streaming SIMD Extensions-3
MWAIT Monitor/Mwait support
DSCPL CPL Qualified Debug Store
EST Enhanced SpeedStep
TM2 Thermal Monitor 2
CID Context ID
CX16 CMPXCHG16B
XTPR Send Task Priority Messages
XSTORE on-CPU RNG present (xstore insn)
XSTORE EN on-CPU RNG enabled
XCRYPT on-CPU crypto (xcrypt insn)
XCRYPT EN on-CPU crypto enabled
LAHF LM LAHF/SAHF in long mode
CMP LEGACY If yes HyperThreading not valid

enum on normal exit

destroy destroy the VM state
restart restart the VM

enum on crash behaviour

destroy destroy the VM state
coredump and destroy record a coredump and then destroy the VM state
restart restart the VM
coredump and restart record a coredump and then restart the VM
preserve leave the crashed VM as-is
rename restart rename the crashed VM and start a new copy

enum boot type

bios boot an HVM guest using an emulated BIOS
grub boot from inside the machine using grub
kernel external boot from an external kernel
kernel internal boot from a kernel inside the guest filesystem

14



enum vbd mode

RO disk is mounted read-only
RW disk is mounted read-write

enum driver type

ioemu use hardware emulation
paravirtualised use paravirtualised driver

15



2.4 Class: session

2.4.1 Fields for class: session

Name session

Description A session
Quals Field Type Description
RO ins this host host ref Currently connected host
RO ins this user user ref Currently connected user

2.4.2 Additional RPCs associated with class: session

RPC name: login with password

Overview: Attempt to authenticate the user, returning a session id if successful
Signature:

(session ref) login_with_password (string uname, string pwd)

Arguments:

type name description

string uname Username for login.
string pwd Password for login.

Return Type: session ref

ID of newly created session

RPC name: logout

Overview: Log out of a session
Signature:

void logout (session_id s)

Return Type: void

RPC name: get this host

Overview: get accessor message derived from field this host of object session
Signature:

(host ref) get_this_host (session_id s, session ref self)

Arguments:

type name description

session ref self object instance

Return Type: host ref

value of the field

16



RPC name: get this user

Overview: get accessor message derived from field this user of object session
Signature:

(user ref) get_this_user (session_id s, session ref self)

Arguments:

type name description

session ref self object instance

Return Type: user ref

value of the field

RPC name: create

Overview: constructor for class session
Signature:

(session ref) create (session_id s, session record args)

Arguments:

type name description

session record args All constructor arguments

Return Type: session ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class session
Signature:

void destroy (session_id s, session ref self)

Arguments:

type name description

session ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the session instance with a particular uuid
Signature:

(session ref) get_by_uuid (session_id s, string uuid)

17



Arguments:

type name description

string uuid UUID of object to return

Return Type: session ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class session
Signature:

(session record) get_record (session_id s, session ref self)

Arguments:

type name description

session ref self reference to the object

Return Type: session record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class session
Signature:

(session record) get_record_internal (session_id s, session ref self)

Arguments:

type name description

session ref self reference to the object

Return Type: session record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((session ref) Set) get_all (session_id s)

Return Type: (session ref) Set

references to all objects

18



2.5 Class: task

2.5.1 Fields for class: task

Name task

Description A longrunning asynchronous task
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RW name/label string a human-readable name
RW name/description string a notes field containg human-

readable description

2.5.2 Additional RPCs associated with class: task

RPC name: get status

Overview: Poll a running asynchronous RPC invocation and query its status
Signature:

(uuid ref) get_status (session_id s, task ref task)

Arguments:

type name description

task ref task The ID of the RPC call to poll

Return Type: uuid ref

String describing status of specified asynchronous RPC invocation, including estimated completion
time

RPC name: get all tasks

Overview: List all asynchronous RPC calls currently executing
Signature:

((task ref) Set) get_all_tasks (session_id s)

Return Type: (task ref) Set

A list of tasks currently executing. Note that tasks are associated with users rather than sessions.
Thus, if you logout and login again with a different session but the same user, this function will
still return the user’s running tasks.

RPC name: get uuid

Overview: get accessor message derived from field uuid of object task
Signature:

string get_uuid (session_id s, task ref self)

Arguments:

type name description

task ref self object instance

19



Return Type: string

value of the field

RPC name: get name label

Overview: get accessor message derived from field name/label of object task
Signature:

string get_name_label (session_id s, task ref self)

Arguments:

type name description

task ref self object instance

Return Type: string

value of the field

RPC name: set name label

Overview: set accessor message derived from field name/label of object task
Signature:

void set_name_label (session_id s, task ref self, string value)

Arguments:

type name description

task ref self object instance
string value New value to set

Return Type: void

RPC name: get name description

Overview: get accessor message derived from field name/description of object task
Signature:

string get_name_description (session_id s, task ref self)

Arguments:

type name description

task ref self object instance

Return Type: string

value of the field

20



RPC name: set name description

Overview: set accessor message derived from field name/description of object task
Signature:

void set_name_description (session_id s, task ref self, string value)

Arguments:

type name description

task ref self object instance
string value New value to set

Return Type: void

RPC name: create

Overview: constructor for class task
Signature:

(task ref) create (session_id s, task record args)

Arguments:

type name description

task record args All constructor arguments

Return Type: task ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class task
Signature:

void destroy (session_id s, task ref self)

Arguments:

type name description

task ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the task instance with a particular uuid
Signature:

(task ref) get_by_uuid (session_id s, string uuid)

21



Arguments:

type name description

string uuid UUID of object to return

Return Type: task ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class task
Signature:

(task record) get_record (session_id s, task ref self)

Arguments:

type name description

task ref self reference to the object

Return Type: task record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class task
Signature:

(task record) get_record_internal (session_id s, task ref self)

Arguments:

type name description

task ref self reference to the object

Return Type: task record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((task ref) Set) get_all (session_id s)

Return Type: (task ref) Set

references to all objects

22



RPC name: get by label

Overview: returns the task instance with a particular name label
Signature:

((task ref) Set) get_by_label (session_id s, string label)

Arguments:

type name description

string label label of object to return

Return Type: (task ref) Set

references to objects with match names

23



2.6 Class: VM

2.6.1 Fields for class: VM

Name VM

Description A virtual machine (or ’guest’)
Quals Field Type Description
ROrun uuid string unique identifier/object reference
ROrun power state vm power state Current power state of the machine
RW name/label string a human-readable name
RW name/description string a notes field containg human-

readable description
RW user version int a user version number for this ma-

chine
RW is a template bool true if this is a template. Template

VMs can never be started, they are
used only for cloning other VMs

ROrun resident on host ref the host the VM is currently resident
on

RO ins memory/static max int Statically-set (i.e. absolute) maxi-
mum

RW memory/dynamic max int Dynamic maximum
ROrun memory/actual int Guest’s actual usage
RW memory/dynamic min int Dynamic minimum
RO ins memory/static min int Statically-set (i.e. absolute) mininum
RW VCPUs/policy string the name of the VCPU scheduling

policy to be applied
RW VCPUs/params string string-encoded parameters passed to

selected VCPU policy
ROrun VCPUs/number int Current number of VCPUs
ROrun VCPUs/utilisation (int → float) Map Utilisation for all of guest’s current

VCPUs
RO ins VCPUs/features/required (cpu feature) Set CPU features the guest demands the

host supports
RO ins VCPUs/features/can use (cpu feature) Set CPU features the guest can use if

available
RW VCPUs/features/force on (cpu feature) Set CPU features to expose to the guest

above the bare minimum
RW VCPUs/features/force off (cpu feature) Set CPU features to hide to the guest
RW actions/after shutdown on normal exit action to take after the guest has

shutdown itself
RW actions/after reboot on normal exit action to take after the guest has re-

booted itself
RW actions/after suspend on normal exit action to take after the guest has sus-

pended itself
RW actions/after crash on crash behaviour action to take if the guest crashes
RO ins VIFs (VIF ref) Set virtual network interfaces
RO ins VBDs (VBD ref) Set virtual block devices
RO ins TPM/instance int included for TPM support
RO ins TPM/backend int included for TPM support
RW bios/boot string device to boot the guest from
RW platform/std VGA bool emulate standard VGA instead of cir-

rus logic
RW platform/serial string redirect serial port to pty

24



RW platform/localtime bool set RTC to local time
RW platform/clock offset bool timeshift applied to guest’s clock
RW platform/enable audio bool emulate audio
RW builder string domain builder to use
RW boot method boot type select how this machine should boot
RW kernel/kernel string path to kernel e.g. /boot/vmlinuz
RW kernel/initrd string path to the initrd e.g.

/boot/initrd.img
RW kernel/args string extra kernel command-line argu-

ments
RW grub/cmdline string grub command-line
RO ins PCI bus string PCI bus path for pass-through de-

vices
ROrun tools version (string → string) Map versions of installed paravirtualised

drivers
RW otherConfig (string → string) Map additional configuration

2.6.2 Additional RPCs associated with class: VM

RPC name: clone

Overview: Clones the specified VM, making a new VM. Clone automatically exploits the capa-
bilities of the underlying storage repository in which the VM’s disk images are stored (e.g. Copy
on Write). This function can only be called when the VM is in the Halted State.
Signature:

(VM ref) clone (session_id s, VM ref vm, string new_name)

Arguments:

type name description

VM ref vm The VM to be cloned
string new name The name of the cloned VM

Return Type: VM ref

The ID of the newly created VM.

RPC name: start

Overview: Start the specified VM. This function can only be called with the VM is in the Halted
State.
Signature:

void start (session_id s, VM ref vm, bool start_paused)

Arguments:

type name description

VM ref vm The VM to start
bool start paused Instantiate VM in paused state if set to true.

Return Type: void

25



RPC name: pause

Overview: Pause the specified VM. This can only be called when the specified VM is in the
Running state.
Signature:

void pause (session_id s, VM ref vm)

Arguments:

type name description

VM ref vm The VM to pause

Return Type: void

RPC name: unpause

Overview: Resume the specified VM. This can only be called when the specified VM is in the
Paused state.
Signature:

void unpause (session_id s, VM ref vm)

Arguments:

type name description

VM ref vm The VM to pause

Return Type: void

RPC name: clean shutdown

Overview: Attempt to cleanly shutdown the specified VM. (Note: this may not be supported—
e.g. if a guest agent is not installed).
Once shutdown has been completed perform poweroff action specified in guest configuration.
Signature:

void clean_shutdown (session_id s, VM ref vm)

Arguments:

type name description

VM ref vm The VM to shutdown

Return Type: void

RPC name: clean reboot

Overview: Attempt to cleanly shutdown the specified VM (Note: this may not be supported—
e.g. if a guest agent is not installed).
Once shutdown has been completed perform reboot action specified in guest configuration.
Signature:

26



void clean_reboot (session_id s, VM ref vm)

Arguments:

type name description

VM ref vm The VM to shutdown

Return Type: void

RPC name: hard shutdown

Overview: Stop executing the specified VM without attempting a clean shutdown. Then perform
poweroff action specified in VM configuration.
Signature:

void hard_shutdown (session_id s, VM ref vm)

Arguments:

type name description

VM ref vm The VM to destroy

Return Type: void

RPC name: hard reboot

Overview: Stop executing the specified VM without attempting a clean shutdown. Then perform
reboot action specified in VM configuration
Signature:

void hard_reboot (session_id s, VM ref vm)

Arguments:

type name description

VM ref vm The VM to reboot

Return Type: void

RPC name: suspend

Overview: Suspend the specified VM to disk.
Signature:

void suspend (session_id s, VM ref vm)

Arguments:

type name description

VM ref vm The VM to hibernate

Return Type: void

27



RPC name: resume

Overview: Awaken the specified VM and resume it.
Signature:

void resume (session_id s, VM ref vm, bool start_paused)

Arguments:

type name description

VM ref vm The VM to unhibernate
bool start paused Unhibernate VM in paused state if set to true.

Return Type: void

RPC name: get all

Overview: Return a list of all the VMs known to the system.
Signature:

((VM ref) Set) get_all (session_id s)

Return Type: (VM ref) Set

A list of all the IDs of all the VMs

RPC name: get uuid

Overview: get accessor message derived from field uuid of object VM
Signature:

string get_uuid (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: get power state

Overview: get accessor message derived from field power state of object VM
Signature:

(vm_power_state) get_power_state (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: vm power state

28



value of the field

RPC name: get name label

Overview: get accessor message derived from field name/label of object VM
Signature:

string get_name_label (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set name label

Overview: set accessor message derived from field name/label of object VM
Signature:

void set_name_label (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get name description

Overview: get accessor message derived from field name/description of object VM
Signature:

string get_name_description (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

29



RPC name: set name description

Overview: set accessor message derived from field name/description of object VM
Signature:

void set_name_description (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get user version

Overview: get accessor message derived from field user version of object VM
Signature:

int get_user_version (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: set user version

Overview: set accessor message derived from field user version of object VM
Signature:

void set_user_version (session_id s, VM ref self, int value)

Arguments:

type name description

VM ref self object instance
int value New value to set

Return Type: void

RPC name: get is a template

Overview: get accessor message derived from field is a template of object VM
Signature:

bool get_is_a_template (session_id s, VM ref self)

30



Arguments:

type name description

VM ref self object instance

Return Type: bool

value of the field

RPC name: set is a template

Overview: set accessor message derived from field is a template of object VM
Signature:

void set_is_a_template (session_id s, VM ref self, bool value)

Arguments:

type name description

VM ref self object instance
bool value New value to set

Return Type: void

RPC name: get resident on

Overview: get accessor message derived from field resident on of object VM
Signature:

(host ref) get_resident_on (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: host ref

value of the field

RPC name: get memory static max

Overview: get accessor message derived from field memory/static max of object VM
Signature:

int get_memory_static_max (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

31



RPC name: get memory dynamic max

Overview: get accessor message derived from field memory/dynamic max of object VM
Signature:

int get_memory_dynamic_max (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: set memory dynamic max

Overview: set accessor message derived from field memory/dynamic max of object VM
Signature:

void set_memory_dynamic_max (session_id s, VM ref self, int value)

Arguments:

type name description

VM ref self object instance
int value New value to set

Return Type: void

RPC name: get memory actual

Overview: get accessor message derived from field memory/actual of object VM
Signature:

int get_memory_actual (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: get memory dynamic min

Overview: get accessor message derived from field memory/dynamic min of object VM
Signature:

int get_memory_dynamic_min (session_id s, VM ref self)

32



Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: set memory dynamic min

Overview: set accessor message derived from field memory/dynamic min of object VM
Signature:

void set_memory_dynamic_min (session_id s, VM ref self, int value)

Arguments:

type name description

VM ref self object instance
int value New value to set

Return Type: void

RPC name: get memory static min

Overview: get accessor message derived from field memory/static min of object VM
Signature:

int get_memory_static_min (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: get VCPUs policy

Overview: get accessor message derived from field VCPUs/policy of object VM
Signature:

string get_VCPUs_policy (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

33



RPC name: set VCPUs policy

Overview: set accessor message derived from field VCPUs/policy of object VM
Signature:

void set_VCPUs_policy (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get VCPUs params

Overview: get accessor message derived from field VCPUs/params of object VM
Signature:

string get_VCPUs_params (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set VCPUs params

Overview: set accessor message derived from field VCPUs/params of object VM
Signature:

void set_VCPUs_params (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get VCPUs number

Overview: get accessor message derived from field VCPUs/number of object VM
Signature:

int get_VCPUs_number (session_id s, VM ref self)

34



Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: get VCPUs utilisation

Overview: get accessor message derived from field VCPUs/utilisation of object VM
Signature:

((int -> float) Map) get_VCPUs_utilisation (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (int → float) Map

value of the field

RPC name: get VCPUs features required

Overview: get accessor message derived from field VCPUs/features/required of object VM
Signature:

((cpu_feature) Set) get_VCPUs_features_required (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (cpu feature) Set

value of the field

RPC name: get VCPUs features can use

Overview: get accessor message derived from field VCPUs/features/can use of object VM
Signature:

((cpu_feature) Set) get_VCPUs_features_can_use (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (cpu feature) Set

value of the field

35



RPC name: get VCPUs features force on

Overview: get accessor message derived from field VCPUs/features/force on of object VM
Signature:

((cpu_feature) Set) get_VCPUs_features_force_on (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (cpu feature) Set

value of the field

RPC name: add VCPUs features force on

Overview: set add message derived from field VCPUs/features/force on of object VM
Signature:

void add_VCPUs_features_force_on (session_id s, VM ref self, cpu_feature value)

Arguments:

type name description

VM ref self object instance
cpu feature value New value to add

Return Type: void

RPC name: remove VCPUs features force on

Overview: set remove message derived from field VCPUs/features/force on of object VM
Signature:

void remove_VCPUs_features_force_on (session_id s, VM ref self, cpu_feature value)

Arguments:

type name description

VM ref self object instance
cpu feature value Value to remove

Return Type: void

RPC name: get VCPUs features force off

Overview: get accessor message derived from field VCPUs/features/force off of object VM
Signature:

((cpu_feature) Set) get_VCPUs_features_force_off (session_id s, VM ref self)

36



Arguments:

type name description

VM ref self object instance

Return Type: (cpu feature) Set

value of the field

RPC name: add VCPUs features force off

Overview: set add message derived from field VCPUs/features/force off of object VM
Signature:

void add_VCPUs_features_force_off (session_id s, VM ref self, cpu_feature value)

Arguments:

type name description

VM ref self object instance
cpu feature value New value to add

Return Type: void

RPC name: remove VCPUs features force off

Overview: set remove message derived from field VCPUs/features/force off of object VM
Signature:

void remove_VCPUs_features_force_off (session_id s, VM ref self, cpu_feature value)

Arguments:

type name description

VM ref self object instance
cpu feature value Value to remove

Return Type: void

RPC name: get actions after shutdown

Overview: get accessor message derived from field actions/after shutdown of object VM
Signature:

(on_normal_exit) get_actions_after_shutdown (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: on normal exit

value of the field

37



RPC name: set actions after shutdown

Overview: set accessor message derived from field actions/after shutdown of object VM
Signature:

void set_actions_after_shutdown (session_id s, VM ref self, on_normal_exit value)

Arguments:

type name description

VM ref self object instance
on normal exit value New value to set

Return Type: void

RPC name: get actions after reboot

Overview: get accessor message derived from field actions/after reboot of object VM
Signature:

(on_normal_exit) get_actions_after_reboot (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: on normal exit

value of the field

RPC name: set actions after reboot

Overview: set accessor message derived from field actions/after reboot of object VM
Signature:

void set_actions_after_reboot (session_id s, VM ref self, on_normal_exit value)

Arguments:

type name description

VM ref self object instance
on normal exit value New value to set

Return Type: void

RPC name: get actions after suspend

Overview: get accessor message derived from field actions/after suspend of object VM
Signature:

(on_normal_exit) get_actions_after_suspend (session_id s, VM ref self)

38



Arguments:

type name description

VM ref self object instance

Return Type: on normal exit

value of the field

RPC name: set actions after suspend

Overview: set accessor message derived from field actions/after suspend of object VM
Signature:

void set_actions_after_suspend (session_id s, VM ref self, on_normal_exit value)

Arguments:

type name description

VM ref self object instance
on normal exit value New value to set

Return Type: void

RPC name: get actions after crash

Overview: get accessor message derived from field actions/after crash of object VM
Signature:

(on_crash_behaviour) get_actions_after_crash (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: on crash behaviour

value of the field

RPC name: set actions after crash

Overview: set accessor message derived from field actions/after crash of object VM
Signature:

void set_actions_after_crash (session_id s, VM ref self, on_crash_behaviour value)

Arguments:

type name description

VM ref self object instance
on crash behaviour value New value to set

Return Type: void

39



RPC name: get VIFs

Overview: get accessor message derived from field VIFs of object VM
Signature:

((VIF ref) Set) get_VIFs (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (VIF ref) Set

value of the field

RPC name: get VBDs

Overview: get accessor message derived from field VBDs of object VM
Signature:

((VBD ref) Set) get_VBDs (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (VBD ref) Set

value of the field

RPC name: get TPM instance

Overview: get accessor message derived from field TPM/instance of object VM
Signature:

int get_TPM_instance (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: get TPM backend

Overview: get accessor message derived from field TPM/backend of object VM
Signature:

int get_TPM_backend (session_id s, VM ref self)

40



Arguments:

type name description

VM ref self object instance

Return Type: int

value of the field

RPC name: get bios boot

Overview: get accessor message derived from field bios/boot of object VM
Signature:

string get_bios_boot (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set bios boot

Overview: set accessor message derived from field bios/boot of object VM
Signature:

void set_bios_boot (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get platform std VGA

Overview: get accessor message derived from field platform/std VGA of object VM
Signature:

bool get_platform_std_VGA (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: bool

value of the field

41



RPC name: set platform std VGA

Overview: set accessor message derived from field platform/std VGA of object VM
Signature:

void set_platform_std_VGA (session_id s, VM ref self, bool value)

Arguments:

type name description

VM ref self object instance
bool value New value to set

Return Type: void

RPC name: get platform serial

Overview: get accessor message derived from field platform/serial of object VM
Signature:

string get_platform_serial (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set platform serial

Overview: set accessor message derived from field platform/serial of object VM
Signature:

void set_platform_serial (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get platform localtime

Overview: get accessor message derived from field platform/localtime of object VM
Signature:

bool get_platform_localtime (session_id s, VM ref self)

42



Arguments:

type name description

VM ref self object instance

Return Type: bool

value of the field

RPC name: set platform localtime

Overview: set accessor message derived from field platform/localtime of object VM
Signature:

void set_platform_localtime (session_id s, VM ref self, bool value)

Arguments:

type name description

VM ref self object instance
bool value New value to set

Return Type: void

RPC name: get platform clock offset

Overview: get accessor message derived from field platform/clock offset of object VM
Signature:

bool get_platform_clock_offset (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: bool

value of the field

RPC name: set platform clock offset

Overview: set accessor message derived from field platform/clock offset of object VM
Signature:

void set_platform_clock_offset (session_id s, VM ref self, bool value)

Arguments:

type name description

VM ref self object instance
bool value New value to set

Return Type: void

43



RPC name: get platform enable audio

Overview: get accessor message derived from field platform/enable audio of object VM
Signature:

bool get_platform_enable_audio (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: bool

value of the field

RPC name: set platform enable audio

Overview: set accessor message derived from field platform/enable audio of object VM
Signature:

void set_platform_enable_audio (session_id s, VM ref self, bool value)

Arguments:

type name description

VM ref self object instance
bool value New value to set

Return Type: void

RPC name: get builder

Overview: get accessor message derived from field builder of object VM
Signature:

string get_builder (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set builder

Overview: set accessor message derived from field builder of object VM
Signature:

void set_builder (session_id s, VM ref self, string value)

44



Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get boot method

Overview: get accessor message derived from field boot method of object VM
Signature:

(boot_type) get_boot_method (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: boot type

value of the field

RPC name: set boot method

Overview: set accessor message derived from field boot method of object VM
Signature:

void set_boot_method (session_id s, VM ref self, boot_type value)

Arguments:

type name description

VM ref self object instance
boot type value New value to set

Return Type: void

RPC name: get kernel kernel

Overview: get accessor message derived from field kernel/kernel of object VM
Signature:

string get_kernel_kernel (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

45



RPC name: set kernel kernel

Overview: set accessor message derived from field kernel/kernel of object VM
Signature:

void set_kernel_kernel (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get kernel initrd

Overview: get accessor message derived from field kernel/initrd of object VM
Signature:

string get_kernel_initrd (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set kernel initrd

Overview: set accessor message derived from field kernel/initrd of object VM
Signature:

void set_kernel_initrd (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get kernel args

Overview: get accessor message derived from field kernel/args of object VM
Signature:

string get_kernel_args (session_id s, VM ref self)

46



Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set kernel args

Overview: set accessor message derived from field kernel/args of object VM
Signature:

void set_kernel_args (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

RPC name: get grub cmdline

Overview: get accessor message derived from field grub/cmdline of object VM
Signature:

string get_grub_cmdline (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: set grub cmdline

Overview: set accessor message derived from field grub/cmdline of object VM
Signature:

void set_grub_cmdline (session_id s, VM ref self, string value)

Arguments:

type name description

VM ref self object instance
string value New value to set

Return Type: void

47



RPC name: get PCI bus

Overview: get accessor message derived from field PCI bus of object VM
Signature:

string get_PCI_bus (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: string

value of the field

RPC name: get tools version

Overview: get accessor message derived from field tools version of object VM
Signature:

((string -> string) Map) get_tools_version (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (string → string) Map

value of the field

RPC name: get otherConfig

Overview: get accessor message derived from field otherConfig of object VM
Signature:

((string -> string) Map) get_otherConfig (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: (string → string) Map

value of the field

RPC name: add to otherConfig

Overview: map add message derived from field otherConfig of object VM
Signature:

void add_to_otherConfig (session_id s, VM ref self, string key, string value)

48



Arguments:

type name description

VM ref self object instance
string key Key to add
string value Value to add

Return Type: void

RPC name: remove from otherConfig

Overview: map remove message derived from field otherConfig of object VM
Signature:

void remove_from_otherConfig (session_id s, VM ref self, string key)

Arguments:

type name description

VM ref self object instance
string key Key to remove

Return Type: void

RPC name: create

Overview: constructor for class VM
Signature:

(VM ref) create (session_id s, VM record args)

Arguments:

type name description

VM record args All constructor arguments

Return Type: VM ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class VM
Signature:

void destroy (session_id s, VM ref self)

Arguments:

type name description

VM ref self object instance

Return Type: void

49



RPC name: get by uuid

Overview: returns the VM instance with a particular uuid
Signature:

(VM ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: VM ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class VM
Signature:

(VM record) get_record (session_id s, VM ref self)

Arguments:

type name description

VM ref self reference to the object

Return Type: VM record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class VM
Signature:

(VM record) get_record_internal (session_id s, VM ref self)

Arguments:

type name description

VM ref self reference to the object

Return Type: VM record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((VM ref) Set) get_all (session_id s)

50



Return Type: (VM ref) Set

references to all objects

RPC name: get by label

Overview: returns the VM instance with a particular name label
Signature:

((VM ref) Set) get_by_label (session_id s, string label)

Arguments:

type name description

string label label of object to return

Return Type: (VM ref) Set

references to objects with match names

51



2.7 Class: host

2.7.1 Fields for class: host

Name host

Description A physical host
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RW name/label string a human-readable name
RW name/description string a notes field containg human-

readable description
ROrun software version (string → string) Map version strings
ROrun resident VMs (VM ref) Set list of VMs currently resident on host
ROrun host CPUs (host cpu ref) Set The physical CPUs on this host

2.7.2 Additional RPCs associated with class: host

RPC name: disable

Overview: Puts the host into a state in which no new VMs can be started. Currently active
VMs on the host continue to execute.
Signature:

void disable (session_id s, host ref host)

Arguments:

type name description

host ref host The Host to disable

Return Type: void

RPC name: enable

Overview: Puts the host into a state in which new VMs can be started.
Signature:

void enable (session_id s, host ref host)

Arguments:

type name description

host ref host The Host to enable

Return Type: void

RPC name: shutdown

Overview: Shutdown the host. (This function can only be called if there are no currently running
VMs on the host and it is disabled.)
Signature:

void shutdown (session_id s, host ref host)

52



Arguments:

type name description

host ref host The Host to shutdown

Return Type: void

RPC name: reboot

Overview: Reboot the host. (This function can only be called if there are no currently running
VMs on the host and it is disabled.)
Signature:

void reboot (session_id s, host ref host)

Arguments:

type name description

host ref host The Host to reboot

Return Type: void

RPC name: get all

Overview: Return a list of all the hosts known to the system
Signature:

((host ref) Set) get_all (session_id s)

Return Type: (host ref) Set

A list of all the IDs of all the hosts

RPC name: get uuid

Overview: get accessor message derived from field uuid of object host
Signature:

string get_uuid (session_id s, host ref self)

Arguments:

type name description

host ref self object instance

Return Type: string

value of the field

53



RPC name: get name label

Overview: get accessor message derived from field name/label of object host
Signature:

string get_name_label (session_id s, host ref self)

Arguments:

type name description

host ref self object instance

Return Type: string

value of the field

RPC name: set name label

Overview: set accessor message derived from field name/label of object host
Signature:

void set_name_label (session_id s, host ref self, string value)

Arguments:

type name description

host ref self object instance
string value New value to set

Return Type: void

RPC name: get name description

Overview: get accessor message derived from field name/description of object host
Signature:

string get_name_description (session_id s, host ref self)

Arguments:

type name description

host ref self object instance

Return Type: string

value of the field

RPC name: set name description

Overview: set accessor message derived from field name/description of object host
Signature:

void set_name_description (session_id s, host ref self, string value)

54



Arguments:

type name description

host ref self object instance
string value New value to set

Return Type: void

RPC name: get software version

Overview: get accessor message derived from field software version of object host
Signature:

((string -> string) Map) get_software_version (session_id s, host ref self)

Arguments:

type name description

host ref self object instance

Return Type: (string → string) Map

value of the field

RPC name: get resident VMs

Overview: get accessor message derived from field resident VMs of object host
Signature:

((VM ref) Set) get_resident_VMs (session_id s, host ref self)

Arguments:

type name description

host ref self object instance

Return Type: (VM ref) Set

value of the field

RPC name: get host CPUs

Overview: get accessor message derived from field host CPUs of object host
Signature:

((host_cpu ref) Set) get_host_CPUs (session_id s, host ref self)

Arguments:

type name description

host ref self object instance

Return Type: (host cpu ref) Set

value of the field

55



RPC name: create

Overview: constructor for class host
Signature:

(host ref) create (session_id s, host record args)

Arguments:

type name description

host record args All constructor arguments

Return Type: host ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class host
Signature:

void destroy (session_id s, host ref self)

Arguments:

type name description

host ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the host instance with a particular uuid
Signature:

(host ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: host ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class host
Signature:

(host record) get_record (session_id s, host ref self)

56



Arguments:

type name description

host ref self reference to the object

Return Type: host record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class host
Signature:

(host record) get_record_internal (session_id s, host ref self)

Arguments:

type name description

host ref self reference to the object

Return Type: host record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((host ref) Set) get_all (session_id s)

Return Type: (host ref) Set

references to all objects

RPC name: get by label

Overview: returns the host instance with a particular name label
Signature:

((host ref) Set) get_by_label (session_id s, string label)

Arguments:

type name description

string label label of object to return

Return Type: (host ref) Set

references to objects with match names

57



2.8 Class: host cpu

2.8.1 Fields for class: host cpu

Name host cpu

Description A physical CPU
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RO ins host host ref the host the CPU is in
RO ins number int the number of the physical CPU

within the host
RO ins features (cpu feature) Set the features supported by the CPU
ROrun utilisation float the current CPU utilisation

2.8.2 Additional RPCs associated with class: host cpu

RPC name: get uuid

Overview: get accessor message derived from field uuid of object host cpu
Signature:

string get_uuid (session_id s, host_cpu ref self)

Arguments:

type name description

host cpu ref self object instance

Return Type: string

value of the field

RPC name: get host

Overview: get accessor message derived from field host of object host cpu
Signature:

(host ref) get_host (session_id s, host_cpu ref self)

Arguments:

type name description

host cpu ref self object instance

Return Type: host ref

value of the field

RPC name: get number

Overview: get accessor message derived from field number of object host cpu
Signature:

int get_number (session_id s, host_cpu ref self)

58



Arguments:

type name description

host cpu ref self object instance

Return Type: int

value of the field

RPC name: get features

Overview: get accessor message derived from field features of object host cpu
Signature:

((cpu_feature) Set) get_features (session_id s, host_cpu ref self)

Arguments:

type name description

host cpu ref self object instance

Return Type: (cpu feature) Set

value of the field

RPC name: get utilisation

Overview: get accessor message derived from field utilisation of object host cpu
Signature:

float get_utilisation (session_id s, host_cpu ref self)

Arguments:

type name description

host cpu ref self object instance

Return Type: float

value of the field

RPC name: create

Overview: constructor for class host cpu
Signature:

(host_cpu ref) create (session_id s, host_cpu record args)

Arguments:

type name description

host cpu record args All constructor arguments

Return Type: host cpu ref

reference to the newly created object

59



RPC name: destroy

Overview: destructor for class host cpu
Signature:

void destroy (session_id s, host_cpu ref self)

Arguments:

type name description

host cpu ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the host cpu instance with a particular uuid
Signature:

(host_cpu ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: host cpu ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class host cpu
Signature:

(host_cpu record) get_record (session_id s, host_cpu ref self)

Arguments:

type name description

host cpu ref self reference to the object

Return Type: host cpu record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class host cpu
Signature:

(host_cpu record) get_record_internal (session_id s, host_cpu ref self)

60



Arguments:

type name description

host cpu ref self reference to the object

Return Type: host cpu record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((host_cpu ref) Set) get_all (session_id s)

Return Type: (host cpu ref) Set

references to all objects

61



2.9 Class: network

2.9.1 Fields for class: network

Name network

Description A virtual network
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RW name/label string a human-readable name
RW name/description string a notes field containg human-

readable description
RO ins VIFs (VIF ref) Set list of connected vifs
RW NIC string ethernet device to use to access this

network. Note: in this revision of the
API all hosts will use the specified
NIC to access this network

RW VLAN string VLAN tag to use to access this net-
work. Note: in this revision of the
API all hosts will use the specified
VLAN tag to access this network

RW default gateway string default gateway IP address. Used for
auto-configuring guests with fixed IP
setting

RW default netmask string default netmask. Used for auto-
configuring guests with fixed IP set-
ting

2.9.2 Additional RPCs associated with class: network

RPC name: get all

Overview: Return a list of all the networks known to the system
Signature:

((network ref) Set) get_all (session_id s)

Return Type: (network ref) Set

A list of all the IDs of all the networks

RPC name: get uuid

Overview: get accessor message derived from field uuid of object network
Signature:

string get_uuid (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: string

value of the field

62



RPC name: get name label

Overview: get accessor message derived from field name/label of object network
Signature:

string get_name_label (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: string

value of the field

RPC name: set name label

Overview: set accessor message derived from field name/label of object network
Signature:

void set_name_label (session_id s, network ref self, string value)

Arguments:

type name description

network ref self object instance
string value New value to set

Return Type: void

RPC name: get name description

Overview: get accessor message derived from field name/description of object network
Signature:

string get_name_description (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: string

value of the field

RPC name: set name description

Overview: set accessor message derived from field name/description of object network
Signature:

void set_name_description (session_id s, network ref self, string value)

63



Arguments:

type name description

network ref self object instance
string value New value to set

Return Type: void

RPC name: get VIFs

Overview: get accessor message derived from field VIFs of object network
Signature:

((VIF ref) Set) get_VIFs (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: (VIF ref) Set

value of the field

RPC name: get NIC

Overview: get accessor message derived from field NIC of object network
Signature:

string get_NIC (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: string

value of the field

RPC name: set NIC

Overview: set accessor message derived from field NIC of object network
Signature:

void set_NIC (session_id s, network ref self, string value)

Arguments:

type name description

network ref self object instance
string value New value to set

Return Type: void

64



RPC name: get VLAN

Overview: get accessor message derived from field VLAN of object network
Signature:

string get_VLAN (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: string

value of the field

RPC name: set VLAN

Overview: set accessor message derived from field VLAN of object network
Signature:

void set_VLAN (session_id s, network ref self, string value)

Arguments:

type name description

network ref self object instance
string value New value to set

Return Type: void

RPC name: get default gateway

Overview: get accessor message derived from field default gateway of object network
Signature:

string get_default_gateway (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: string

value of the field

RPC name: set default gateway

Overview: set accessor message derived from field default gateway of object network
Signature:

void set_default_gateway (session_id s, network ref self, string value)

65



Arguments:

type name description

network ref self object instance
string value New value to set

Return Type: void

RPC name: get default netmask

Overview: get accessor message derived from field default netmask of object network
Signature:

string get_default_netmask (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: string

value of the field

RPC name: set default netmask

Overview: set accessor message derived from field default netmask of object network
Signature:

void set_default_netmask (session_id s, network ref self, string value)

Arguments:

type name description

network ref self object instance
string value New value to set

Return Type: void

RPC name: create

Overview: constructor for class network
Signature:

(network ref) create (session_id s, network record args)

Arguments:

type name description

network record args All constructor arguments

Return Type: network ref

reference to the newly created object

66



RPC name: destroy

Overview: destructor for class network
Signature:

void destroy (session_id s, network ref self)

Arguments:

type name description

network ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the network instance with a particular uuid
Signature:

(network ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: network ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class network
Signature:

(network record) get_record (session_id s, network ref self)

Arguments:

type name description

network ref self reference to the object

Return Type: network record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class network
Signature:

(network record) get_record_internal (session_id s, network ref self)

67



Arguments:

type name description

network ref self reference to the object

Return Type: network record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((network ref) Set) get_all (session_id s)

Return Type: (network ref) Set

references to all objects

RPC name: get by label

Overview: returns the network instance with a particular name label
Signature:

((network ref) Set) get_by_label (session_id s, string label)

Arguments:

type name description

string label label of object to return

Return Type: (network ref) Set

references to objects with match names

68



2.10 Class: VIF

2.10.1 Fields for class: VIF

Name VIF

Description A virtual network interface
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RW name string human-readable name of the interface
RW type driver type interface type
RW device string name of network device as exposed to

guest e.g. eth0
RW network network ref virtual network to which this vif is

connected
RW VM VM ref virtual machine to which this vif is

connected
RW MAC string ethernet MAC address of virtual in-

terface, as exposed to guest
RW MTU int MTU in octets
ROrun network read kbs float Incoming network bandwidth
ROrun network write kbs float Outgoing network bandwidth
ROrun IO bandwidth/incoming kbs float Read bandwidth (Kb/s)
ROrun IO bandwidth/outgoing kbs float Write bandwidth (Kb/s)

2.10.2 Additional RPCs associated with class: VIF

RPC name: get uuid

Overview: get accessor message derived from field uuid of object VIF
Signature:

string get_uuid (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: string

value of the field

RPC name: get name

Overview: get accessor message derived from field name of object VIF
Signature:

string get_name (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: string

value of the field

69



RPC name: set name

Overview: set accessor message derived from field name of object VIF
Signature:

void set_name (session_id s, VIF ref self, string value)

Arguments:

type name description

VIF ref self object instance
string value New value to set

Return Type: void

RPC name: get type

Overview: get accessor message derived from field type of object VIF
Signature:

(driver_type) get_type (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: driver type

value of the field

RPC name: set type

Overview: set accessor message derived from field type of object VIF
Signature:

void set_type (session_id s, VIF ref self, driver_type value)

Arguments:

type name description

VIF ref self object instance
driver type value New value to set

Return Type: void

RPC name: get device

Overview: get accessor message derived from field device of object VIF
Signature:

string get_device (session_id s, VIF ref self)

70



Arguments:

type name description

VIF ref self object instance

Return Type: string

value of the field

RPC name: set device

Overview: set accessor message derived from field device of object VIF
Signature:

void set_device (session_id s, VIF ref self, string value)

Arguments:

type name description

VIF ref self object instance
string value New value to set

Return Type: void

RPC name: get network

Overview: get accessor message derived from field network of object VIF
Signature:

(network ref) get_network (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: network ref

value of the field

RPC name: set network

Overview: set accessor message derived from field network of object VIF
Signature:

void set_network (session_id s, VIF ref self, network ref value)

Arguments:

type name description

VIF ref self object instance
network ref value New value to set

Return Type: void

71



RPC name: get VM

Overview: get accessor message derived from field VM of object VIF
Signature:

(VM ref) get_VM (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: VM ref

value of the field

RPC name: set VM

Overview: set accessor message derived from field VM of object VIF
Signature:

void set_VM (session_id s, VIF ref self, VM ref value)

Arguments:

type name description

VIF ref self object instance
VM ref value New value to set

Return Type: void

RPC name: get MAC

Overview: get accessor message derived from field MAC of object VIF
Signature:

string get_MAC (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: string

value of the field

RPC name: set MAC

Overview: set accessor message derived from field MAC of object VIF
Signature:

void set_MAC (session_id s, VIF ref self, string value)

72



Arguments:

type name description

VIF ref self object instance
string value New value to set

Return Type: void

RPC name: get MTU

Overview: get accessor message derived from field MTU of object VIF
Signature:

int get_MTU (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: int

value of the field

RPC name: set MTU

Overview: set accessor message derived from field MTU of object VIF
Signature:

void set_MTU (session_id s, VIF ref self, int value)

Arguments:

type name description

VIF ref self object instance
int value New value to set

Return Type: void

RPC name: get network read kbs

Overview: get accessor message derived from field network read kbs of object VIF
Signature:

float get_network_read_kbs (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: float

value of the field

73



RPC name: get network write kbs

Overview: get accessor message derived from field network write kbs of object VIF
Signature:

float get_network_write_kbs (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: float

value of the field

RPC name: get IO bandwidth incoming kbs

Overview: get accessor message derived from field IO bandwidth/incoming kbs of object VIF
Signature:

float get_IO_bandwidth_incoming_kbs (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: float

value of the field

RPC name: get IO bandwidth outgoing kbs

Overview: get accessor message derived from field IO bandwidth/outgoing kbs of object VIF
Signature:

float get_IO_bandwidth_outgoing_kbs (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: float

value of the field

RPC name: create

Overview: constructor for class VIF
Signature:

(VIF ref) create (session_id s, VIF record args)

74



Arguments:

type name description

VIF record args All constructor arguments

Return Type: VIF ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class VIF
Signature:

void destroy (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the VIF instance with a particular uuid
Signature:

(VIF ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: VIF ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class VIF
Signature:

(VIF record) get_record (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self reference to the object

Return Type: VIF record

all fields from the object

75



RPC name: get record internal

Overview: returns a record containing the state of an instance of class VIF
Signature:

(VIF record) get_record_internal (session_id s, VIF ref self)

Arguments:

type name description

VIF ref self reference to the object

Return Type: VIF record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((VIF ref) Set) get_all (session_id s)

Return Type: (VIF ref) Set

references to all objects

76



2.11 Class: SR

2.11.1 Fields for class: SR

Name SR

Description A storage repository
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RW name/label string a human-readable name
RW name/description string a notes field containg human-

readable description
ROrun VDIs (VDI ref) Set managed virtual disks
ROrun virtual allocation int sum of virtual sizes of all VDIs in this

storage repository (in bytes)
ROrun physical utilisation int physical space currently utilised on

this storage repository (in bytes).
Note that for sparse disk formats,
physical utilisation may be less than
virtual allocation

RO ins physical size int total physical size of the repository
(in bytes)

RO ins type string type of the storage repository
RO ins location string a string that uniquely determines the

location of the storage repository; the
format of this string depends on the
repository’s type

2.11.2 Additional RPCs associated with class: SR

RPC name: clone

Overview: Take an exact copy of the Storage Repository; the cloned storage repository has the
same type as its parent
Signature:

(SR ref) clone (session_id s, SR ref sr, string loc, string name)

Arguments:

type name description

SR ref sr The Storage Repository to clone
string loc The location string that defines where the new

storage repository will be located
string name The name of the new storage repository

Return Type: SR ref

The ID of the newly created Storage Repository.

RPC name: get all

Overview: Return a list of all the Storage Repositories known to the system
Signature:

((SR ref) Set) get_all (session_id s)

77



Return Type: (SR ref) Set

A list of all the IDs of all the Storage Repositories

RPC name: get uuid

Overview: get accessor message derived from field uuid of object SR
Signature:

string get_uuid (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: string

value of the field

RPC name: get name label

Overview: get accessor message derived from field name/label of object SR
Signature:

string get_name_label (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: string

value of the field

RPC name: set name label

Overview: set accessor message derived from field name/label of object SR
Signature:

void set_name_label (session_id s, SR ref self, string value)

Arguments:

type name description

SR ref self object instance
string value New value to set

Return Type: void

78



RPC name: get name description

Overview: get accessor message derived from field name/description of object SR
Signature:

string get_name_description (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: string

value of the field

RPC name: set name description

Overview: set accessor message derived from field name/description of object SR
Signature:

void set_name_description (session_id s, SR ref self, string value)

Arguments:

type name description

SR ref self object instance
string value New value to set

Return Type: void

RPC name: get VDIs

Overview: get accessor message derived from field VDIs of object SR
Signature:

((VDI ref) Set) get_VDIs (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: (VDI ref) Set

value of the field

RPC name: get virtual allocation

Overview: get accessor message derived from field virtual allocation of object SR
Signature:

int get_virtual_allocation (session_id s, SR ref self)

79



Arguments:

type name description

SR ref self object instance

Return Type: int

value of the field

RPC name: get physical utilisation

Overview: get accessor message derived from field physical utilisation of object SR
Signature:

int get_physical_utilisation (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: int

value of the field

RPC name: get physical size

Overview: get accessor message derived from field physical size of object SR
Signature:

int get_physical_size (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: int

value of the field

RPC name: get type

Overview: get accessor message derived from field type of object SR
Signature:

string get_type (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: string

value of the field

80



RPC name: get location

Overview: get accessor message derived from field location of object SR
Signature:

string get_location (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: string

value of the field

RPC name: create

Overview: constructor for class SR
Signature:

(SR ref) create (session_id s, SR record args)

Arguments:

type name description

SR record args All constructor arguments

Return Type: SR ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class SR
Signature:

void destroy (session_id s, SR ref self)

Arguments:

type name description

SR ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the SR instance with a particular uuid
Signature:

(SR ref) get_by_uuid (session_id s, string uuid)

81



Arguments:

type name description

string uuid UUID of object to return

Return Type: SR ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class SR
Signature:

(SR record) get_record (session_id s, SR ref self)

Arguments:

type name description

SR ref self reference to the object

Return Type: SR record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class SR
Signature:

(SR record) get_record_internal (session_id s, SR ref self)

Arguments:

type name description

SR ref self reference to the object

Return Type: SR record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((SR ref) Set) get_all (session_id s)

Return Type: (SR ref) Set

references to all objects

82



RPC name: get by label

Overview: returns the SR instance with a particular name label
Signature:

((SR ref) Set) get_by_label (session_id s, string label)

Arguments:

type name description

string label label of object to return

Return Type: (SR ref) Set

references to objects with match names

83



2.12 Class: VDI

2.12.1 Fields for class: VDI

Name VDI

Description A virtual disk image
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RW name/label string a human-readable name
RW name/description string a notes field containg human-

readable description
RW SR SR ref storage repository in which the VDI

resides
RO ins VBDs (VBD ref) Set list of vbds that refer to this disk
RW virtual size int size of disk as presented to the guest

(in multiples of sector size field)
ROrun physical utilisation int amount of physical space that the

disk image is currently taking up on
the storage repository (in bytes)

RO ins sector size int sector size of VDI (in bytes)
RO ins type vdi type type of the VDI
RO ins parent VDI ref parent disk (e.g. in the case of copy

on write)
RO ins children (VDI ref) Set child disks (e.g. in the case of copy

on write)
RW sharable bool true if this disk may be shared
RW read only bool true if this disk may ONLY be

mounted read-only

2.12.2 Additional RPCs associated with class: VDI

RPC name: snapshot

Overview: Take an exact copy of the VDI; the snapshot lives in the same Storage Repository as
its parent.
Signature:

(VDI ref) snapshot (session_id s, VDI ref vdi)

Arguments:

type name description

VDI ref vdi The VDI to snapshot

Return Type: VDI ref

The ID of the newly created VDI.

RPC name: get uuid

Overview: get accessor message derived from field uuid of object VDI
Signature:

string get_uuid (session_id s, VDI ref self)

84



Arguments:

type name description

VDI ref self object instance

Return Type: string

value of the field

RPC name: get name label

Overview: get accessor message derived from field name/label of object VDI
Signature:

string get_name_label (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: string

value of the field

RPC name: set name label

Overview: set accessor message derived from field name/label of object VDI
Signature:

void set_name_label (session_id s, VDI ref self, string value)

Arguments:

type name description

VDI ref self object instance
string value New value to set

Return Type: void

RPC name: get name description

Overview: get accessor message derived from field name/description of object VDI
Signature:

string get_name_description (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: string

value of the field

85



RPC name: set name description

Overview: set accessor message derived from field name/description of object VDI
Signature:

void set_name_description (session_id s, VDI ref self, string value)

Arguments:

type name description

VDI ref self object instance
string value New value to set

Return Type: void

RPC name: get SR

Overview: get accessor message derived from field SR of object VDI
Signature:

(SR ref) get_SR (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: SR ref

value of the field

RPC name: set SR

Overview: set accessor message derived from field SR of object VDI
Signature:

void set_SR (session_id s, VDI ref self, SR ref value)

Arguments:

type name description

VDI ref self object instance
SR ref value New value to set

Return Type: void

RPC name: get VBDs

Overview: get accessor message derived from field VBDs of object VDI
Signature:

((VBD ref) Set) get_VBDs (session_id s, VDI ref self)

86



Arguments:

type name description

VDI ref self object instance

Return Type: (VBD ref) Set

value of the field

RPC name: get virtual size

Overview: get accessor message derived from field virtual size of object VDI
Signature:

int get_virtual_size (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: int

value of the field

RPC name: set virtual size

Overview: set accessor message derived from field virtual size of object VDI
Signature:

void set_virtual_size (session_id s, VDI ref self, int value)

Arguments:

type name description

VDI ref self object instance
int value New value to set

Return Type: void

RPC name: get physical utilisation

Overview: get accessor message derived from field physical utilisation of object VDI
Signature:

int get_physical_utilisation (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: int

value of the field

87



RPC name: get sector size

Overview: get accessor message derived from field sector size of object VDI
Signature:

int get_sector_size (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: int

value of the field

RPC name: get type

Overview: get accessor message derived from field type of object VDI
Signature:

(vdi_type) get_type (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: vdi type

value of the field

RPC name: get parent

Overview: get accessor message derived from field parent of object VDI
Signature:

(VDI ref) get_parent (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: VDI ref

value of the field

RPC name: get children

Overview: get accessor message derived from field children of object VDI
Signature:

((VDI ref) Set) get_children (session_id s, VDI ref self)

88



Arguments:

type name description

VDI ref self object instance

Return Type: (VDI ref) Set

value of the field

RPC name: get sharable

Overview: get accessor message derived from field sharable of object VDI
Signature:

bool get_sharable (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: bool

value of the field

RPC name: set sharable

Overview: set accessor message derived from field sharable of object VDI
Signature:

void set_sharable (session_id s, VDI ref self, bool value)

Arguments:

type name description

VDI ref self object instance
bool value New value to set

Return Type: void

RPC name: get read only

Overview: get accessor message derived from field read only of object VDI
Signature:

bool get_read_only (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: bool

value of the field

89



RPC name: set read only

Overview: set accessor message derived from field read only of object VDI
Signature:

void set_read_only (session_id s, VDI ref self, bool value)

Arguments:

type name description

VDI ref self object instance
bool value New value to set

Return Type: void

RPC name: create

Overview: constructor for class VDI
Signature:

(VDI ref) create (session_id s, VDI record args)

Arguments:

type name description

VDI record args All constructor arguments

Return Type: VDI ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class VDI
Signature:

void destroy (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the VDI instance with a particular uuid
Signature:

(VDI ref) get_by_uuid (session_id s, string uuid)

90



Arguments:

type name description

string uuid UUID of object to return

Return Type: VDI ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class VDI
Signature:

(VDI record) get_record (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self reference to the object

Return Type: VDI record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class VDI
Signature:

(VDI record) get_record_internal (session_id s, VDI ref self)

Arguments:

type name description

VDI ref self reference to the object

Return Type: VDI record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((VDI ref) Set) get_all (session_id s)

Return Type: (VDI ref) Set

references to all objects

91



RPC name: get by label

Overview: returns the VDI instance with a particular name label
Signature:

((VDI ref) Set) get_by_label (session_id s, string label)

Arguments:

type name description

string label label of object to return

Return Type: (VDI ref) Set

references to objects with match names

92



2.13 Class: VBD

2.13.1 Fields for class: VBD

Name VBD

Description A virtual block device
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RW VM VM ref the virtual machine
RW VDI VDI ref the virtual disk
RW device string device seen by the guest e.g. hda1
RW mode vbd mode the mode the disk should be mounted

with
RW driver driver type the style of driver
ROrun IO bandwidth/incoming kbs float Read bandwidth (Kb/s)
ROrun IO bandwidth/outgoing kbs float Write bandwidth (Kb/s)

2.13.2 Additional RPCs associated with class: VBD

RPC name: get uuid

Overview: get accessor message derived from field uuid of object VBD
Signature:

string get_uuid (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: string

value of the field

RPC name: get VM

Overview: get accessor message derived from field VM of object VBD
Signature:

(VM ref) get_VM (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: VM ref

value of the field

RPC name: set VM

Overview: set accessor message derived from field VM of object VBD
Signature:

93



void set_VM (session_id s, VBD ref self, VM ref value)

Arguments:

type name description

VBD ref self object instance
VM ref value New value to set

Return Type: void

RPC name: get VDI

Overview: get accessor message derived from field VDI of object VBD
Signature:

(VDI ref) get_VDI (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: VDI ref

value of the field

RPC name: set VDI

Overview: set accessor message derived from field VDI of object VBD
Signature:

void set_VDI (session_id s, VBD ref self, VDI ref value)

Arguments:

type name description

VBD ref self object instance
VDI ref value New value to set

Return Type: void

RPC name: get device

Overview: get accessor message derived from field device of object VBD
Signature:

string get_device (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: string

94



value of the field

RPC name: set device

Overview: set accessor message derived from field device of object VBD
Signature:

void set_device (session_id s, VBD ref self, string value)

Arguments:

type name description

VBD ref self object instance
string value New value to set

Return Type: void

RPC name: get mode

Overview: get accessor message derived from field mode of object VBD
Signature:

(vbd_mode) get_mode (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: vbd mode

value of the field

RPC name: set mode

Overview: set accessor message derived from field mode of object VBD
Signature:

void set_mode (session_id s, VBD ref self, vbd_mode value)

Arguments:

type name description

VBD ref self object instance
vbd mode value New value to set

Return Type: void

95



RPC name: get driver

Overview: get accessor message derived from field driver of object VBD
Signature:

(driver_type) get_driver (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: driver type

value of the field

RPC name: set driver

Overview: set accessor message derived from field driver of object VBD
Signature:

void set_driver (session_id s, VBD ref self, driver_type value)

Arguments:

type name description

VBD ref self object instance
driver type value New value to set

Return Type: void

RPC name: get IO bandwidth incoming kbs

Overview: get accessor message derived from field IO bandwidth/incoming kbs of object VBD
Signature:

float get_IO_bandwidth_incoming_kbs (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: float

value of the field

RPC name: get IO bandwidth outgoing kbs

Overview: get accessor message derived from field IO bandwidth/outgoing kbs of object VBD
Signature:

float get_IO_bandwidth_outgoing_kbs (session_id s, VBD ref self)

96



Arguments:

type name description

VBD ref self object instance

Return Type: float

value of the field

RPC name: create

Overview: constructor for class VBD
Signature:

(VBD ref) create (session_id s, VBD record args)

Arguments:

type name description

VBD record args All constructor arguments

Return Type: VBD ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class VBD
Signature:

void destroy (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the VBD instance with a particular uuid
Signature:

(VBD ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: VBD ref

reference to the object

97



RPC name: get record

Overview: returns a record containing the state of an instance of class VBD
Signature:

(VBD record) get_record (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self reference to the object

Return Type: VBD record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class VBD
Signature:

(VBD record) get_record_internal (session_id s, VBD ref self)

Arguments:

type name description

VBD ref self reference to the object

Return Type: VBD record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((VBD ref) Set) get_all (session_id s)

Return Type: (VBD ref) Set

references to all objects

98



2.14 Class: user

2.14.1 Fields for class: user

Name user

Description A user of the system
Quals Field Type Description
ROrun uuid string unique identifier/object reference
RO ins short name string short name (e.g. userid)
RW fullname string full name

2.14.2 Additional RPCs associated with class: user

RPC name: get uuid

Overview: get accessor message derived from field uuid of object user
Signature:

string get_uuid (session_id s, user ref self)

Arguments:

type name description

user ref self object instance

Return Type: string

value of the field

RPC name: get short name

Overview: get accessor message derived from field short name of object user
Signature:

string get_short_name (session_id s, user ref self)

Arguments:

type name description

user ref self object instance

Return Type: string

value of the field

RPC name: get fullname

Overview: get accessor message derived from field fullname of object user
Signature:

string get_fullname (session_id s, user ref self)

Arguments:

type name description

user ref self object instance

99



Return Type: string

value of the field

RPC name: set fullname

Overview: set accessor message derived from field fullname of object user
Signature:

void set_fullname (session_id s, user ref self, string value)

Arguments:

type name description

user ref self object instance
string value New value to set

Return Type: void

RPC name: create

Overview: constructor for class user
Signature:

(user ref) create (session_id s, user record args)

Arguments:

type name description

user record args All constructor arguments

Return Type: user ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class user
Signature:

void destroy (session_id s, user ref self)

Arguments:

type name description

user ref self object instance

Return Type: void

100



RPC name: get by uuid

Overview: returns the user instance with a particular uuid
Signature:

(user ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: user ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class user
Signature:

(user record) get_record (session_id s, user ref self)

Arguments:

type name description

user ref self reference to the object

Return Type: user record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class user
Signature:

(user record) get_record_internal (session_id s, user ref self)

Arguments:

type name description

user ref self reference to the object

Return Type: user record

all fields from the object, including implementation-only ones

RPC name: get all

Overview: returns a set of references to all objects
Signature:

((user ref) Set) get_all (session_id s)

101



Return Type: (user ref) Set

references to all objects

102



2.15 Class: debug

2.15.1 Fields for class: debug

Class debug has no fields.

2.15.2 Additional RPCs associated with class: debug

RPC name: get all

Overview: Return a list of all the debug records known to the system
Signature:

((debug ref) Set) get_all (session_id s)

Return Type: (debug ref) Set

A list of all the IDs of all the debug records

RPC name: return failure

Overview: Return an API ’successful’ failure
Signature:

void return_failure (session_id s)

Return Type: void

RPC name: create

Overview: constructor for class debug
Signature:

(debug ref) create (session_id s, debug record args)

Arguments:

type name description

debug record args All constructor arguments

Return Type: debug ref

reference to the newly created object

RPC name: destroy

Overview: destructor for class debug
Signature:

void destroy (session_id s, debug ref self)

103



Arguments:

type name description

debug ref self object instance

Return Type: void

RPC name: get by uuid

Overview: returns the debug instance with a particular uuid
Signature:

(debug ref) get_by_uuid (session_id s, string uuid)

Arguments:

type name description

string uuid UUID of object to return

Return Type: debug ref

reference to the object

RPC name: get record

Overview: returns a record containing the state of an instance of class debug
Signature:

(debug record) get_record (session_id s, debug ref self)

Arguments:

type name description

debug ref self reference to the object

Return Type: debug record

all fields from the object

RPC name: get record internal

Overview: returns a record containing the state of an instance of class debug
Signature:

(debug record) get_record_internal (session_id s, debug ref self)

Arguments:

type name description

debug ref self reference to the object

Return Type: debug record

all fields from the object, including implementation-only ones

104



RPC name: get all

Overview: returns a set of references to all objects
Signature:

((debug ref) Set) get_all (session_id s)

Return Type: (debug ref) Set

references to all objects

2.16 DTD

General notes:

• Values of primitive types (int, bool, etc) and higher-order types (Sets, Maps) are encoded as
simple strings, rather than being expanded into XML fragments. For example “5”, “true”,
“1, 2, 3, 4”, “(1, 2), (2, 3), (3, 4)”

• Values of enumeration types are represented as strings (e.g. “PAE”, “3DNow!”)

• Object References are represented as UUIDs, written in string form

105



Chapter 3

GNU Free Documentation License

Version 1.2, November 2002
Copyright c©2000,2001,2002 Free Software Foundation, Inc.

51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful document
”free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.
This License is a kind of ”copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the
conditions stated herein. The ”Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as ”you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.
A ”Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.
A ”Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the Docu-
ment’s overall subject (or to related matters) and contains nothing that could fall directly within
that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary
Section may not explain any mathematics.) The relationship could be a matter of historical con-
nection with the subject or with related matters, or of legal, commercial, philosophical, ethical or
political position regarding them.

106



The ”Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not fit the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.
The ”Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A ”Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
”Transparent” is called ”Opaque”.
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.
The ”Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, ”Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.
A section ”Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as ”Acknowledgements”,
”Dedications”, ”Endorsements”, or ”History”.) To ”Preserve the Title” of such a section
when you modify the Document means that it remains a section ”Entitled XYZ” according to this
definition.
The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference
in this License, but only as regards disclaiming warranties: any other implication that these
Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions what-
soever to those of this License. You may not use technical measures to obstruct or control the
reading or further copying of the copies you make or distribute. However, you may accept com-
pensation in exchange for copies. If you distribute a large enough number of copies you must also
follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,

107



you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the
full title with all words of the title equally prominent and visible. You may add other material on
the covers in addition. Copying with changes limited to the covers, as long as they preserve the
title of the Document and satisfy these conditions, can be treated as verbatim copying in other
respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of
the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.
It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship
of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission
to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

108



I. Preserve the section Entitled ”History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled ”History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document
for previous versions it was based on. These may be placed in the ”History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled ”Acknowledgements” or ”Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled ”Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled ”Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.
You may add a section Entitled ”Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties–for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.
The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

109



In the combination, you must combine any sections Entitled ”History” in the various original
documents, forming one section Entitled ”History”; likewise combine any sections Entitled ”Ac-
knowledgements”, and any sections Entitled ”Dedications”. You must delete all sections Entitled
”Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a single
copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an ”aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,
provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.
If a section in the Document is Entitled ”Acknowledgements”, ”Dedications”, or ”History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
for under this License. Any other attempt to copy, modify, sublicense or distribute the Document
is void, and will automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have their licenses terminated
so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

110



Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License ”or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as
a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright c©YEAR YOUR NAME. Permission is granted to copy, distribute and/or
modify this document under the terms of the GNU Free Documentation License, Ver-
sion 1.2 or any later version published by the Free Software Foundation; with no
Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the
license is included in the section entitled ”GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the ”with...Texts.”
line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

111


